无
本书用测度论的观点论述概率论的基本概念,如概率、随机变量与分布函数、数学期望与条件数学期望和中心极限定理等。本书特点是把测度论的基本内容与概率论的基本内容结合在一起讲述,论述严谨,条理清楚,便于自学,凡学过概率论基础课的读者都能阅读本书。每节后面附有习题,以便加深理解书中的内容。
本书作为第四版,在第三版的基础上增加了一些由新技术产生的新的分析计算方法,并加入了矩阵、线性代数等一些基础计算方法。内容上系统阐述了有限单元法的基本原理及其工程应用,包括杆系结构,弹性力学平面问题,单元分析,整体分析,平面问题高次元,弹性力学轴对称问题,弹性力学空间问题,形函数、坐标变换、等参数单元与无线单元,各种平面与空间单元的比较、应用实例,弹性薄板,弹性薄壳,轴对称壳,弹性厚板和厚壳,流体力学问题,热传导问题,非线性有限元分析方法,塑性力学问题,混凝土徐变、一般黏弹性及黏塑性问题,弹性稳定问题,大位移问题,断裂力学问题,结构动力学问题,岩石力学问题,土力学问题,混凝土与钢筋混凝土结构,工程反分析与数值监控,网络自动生成、误差估计与自适应技术,矩阵,线性代数方程组,变分
本书比较全面系统地介绍蒙特卡罗方法的理论和应用.全书15章,前8章是蒙特卡罗方法的理论部分,包括蒙特卡罗方法简史、随机数产生和检验、概率分布抽样方法、马尔可夫链蒙特卡罗方法、基本蒙特卡罗方法、降低方差基本方法、拟蒙特卡罗方法和序贯蒙特卡罗方法.后7章是蒙特卡罗方法的应用部分,包括确定性问题、粒子输运、稀薄气体动力学、自然科学基础、数理统计学和可靠性、金融经济学及科学实验模拟.
《现代数学基础丛书·典藏版73:调和分析及其在偏微分方程中的应用(第二版)》内容涉及调和分析的经典理论,特别是与偏微分方程研究密切相关的方法与技巧。例如:C-Z奇异积分算子、Littlewood-Paley理论、抽象插值方法、可微函数空间的调和分析刻画等。同时着力于用调和分析的方法研究偏微分方程,为此,详细讨论了振荡积分理论、Fourier限制型估计及相应的Strichartz估计、Keel-Tao端点时空估计等。借助于调和分析的现代理论与方法,研究了波动及色散方程的Cauchy问题的适定性、低正则性与散射性理论。第二版对一些内容进行了增删,诸如:增加了发展型方程的调和分析方法的研究背景、非线性Klein-Gordon方程的低正则性,删除了波动方程的散射性。重新改写了一些章节,增加了许多注记,以反映这一领域的新进展。《现代数学基础丛书·典藏版73:调和分析及其在
哥德巴赫猜想、孪生素数、素数分布、华林问题,除数问题、圆内整点问题、整数分拆及黎曼猜想等数论问题吸引了古今无数的数学爱好者。《解析数论基础》全面详细地讨论了迄今为止研究这些问题的重要的分析方法、理论和结果,介绍了它们的历史及新进展,是研究这些问题必不可少的入门书。
本书是我为大连理工大学应用数学系研究生讲授现代分析的讲义。由于部分学生未学过曲面上的微分几何,因此在第1章中扼要地介绍了曲面上微分几何的基本内容。第2章讲微分流形和张量,第3章讲流形上的微积分。出版时增加了绪论和诗化微分几何、相对论中的数学原理、数学机械化的基本原理部分,在其中主要讲作者个人的一些观点。 传统的数学教科书采用定义定理证明的模式,即DTP模式。本书也采用了这种模式。这种模式严格,有不可替代的优点,但是也有缺点。初学者容易陷入大量的推导之中,不易理解数学的精神实质。这套数学语言像音乐中的五线谱,五线谱严格,但缺乏音乐修养的人,只看五线谱很难在头脑中形成旋律。数学中也有类似的情形。
线性和非线性代数方程组求解是众多科学与工程计算领域的基础共性任务,也是整体数值模拟的关键。本书系统而深入地介绍了迭代方法、预处理技术及其并行计算。迭代法涉及分裂方法、并行多分裂方法、Krylov子空间方法、并行Krylov子空间方法、Newton法及其变形;预处理技术涉及一般代数预处理、问题相关预处理、多层和多重网格预处理以及非线性预处理;为了方便实施,介绍了方法在诸多方面的应用,并用统一框架介绍了网上可得解法器和预处理软件包。
概率图模型将概率论与图论相结合,是当前非常热门的一个机器学习研究方向。科勒、弗里德曼编著的《概率图模型原理与技术》详细论述了有向图模型(又称贝叶斯网)和无向图模型(又称马尔可夫网)的表示、推理和学习问题,全面总结了人工智能这一前沿研究领域的*进展。为了便于读者理解,书中包含了大量的定义、定理、证明、算法及其伪代码,穿插了大量的辅助材料,如示例(examples)、技巧专栏(skill boxes)、实例专栏(case study boxes)、概念专栏(concept boxes)等。另外,在第2章介绍了概率论和图论的核心知识,在附录中介绍了信息论、算法复杂性、组合优化等补充材料,为学习和运用概率图模型提供了完备的基础。 本书可作为高等学校和科研单位从事人工智能、机器学习、模式识别、信号处理等方向的学生、教师和研究人员的教材和参考书
本书从应用角度简要地阐述了试验设计、现代统计、数据挖掘,以及各专业领域试验统计等600多种统计分析和模型模拟方法。这一版新增加的主要内容有广义线性模型、面板数据分析、单位根检验等。DPS数据处理系统软件试用版可从网站*的下载中心下载、试用。
线性和非线性代数方程组求解是众多科学与工程计算领域的基础共性任务,也是整体数值模拟的关键,《迭代方法和预处理技术(上册)》系统而深入地介绍了迭代方法、预处理技术及其并行计算,迭代法涉及分裂方法、并行多分裂方法、Krylov子空间方法、并行Krylov子空间方法、Newton法及其变形;预处理技术涉及一般代数预处理、多层和多重网格预处理、问题相关预处理以及非线性预处理;为了方便实施,介绍了迭代方法和预处理技术在诸多方面的应用,并用统一框架介绍了网上可得到的解法器和预处理软件包。 《迭代方法和预处理技术》可用作并行数值方法等相关专业的硕士和博士研究生教材,也可作为关心代数方程组高效求解的科研人员的参考书。
作为统计学的两大分支,频率论和贝叶斯统计创立的时间相差无几,但贝叶斯统计直到近10年才被逐步引进到生态学数据分析。本书涵盖方法引论与实验分析应用两部分,针对多个时空尺度,介绍了适合于生态学数据的统计推断方法和层次模型,涉及经典频率论和贝叶斯统计的模型、算法和具体编程。首先阐述了生态学数据的层次结构和时空变异性,以及频率论和贝叶斯统计。然后介绍贝叶斯推断的基础概念、分析框架和算法原理;并进一步针对生态学层次模型、时间序列及时空复合格局数据依次展开分析模拟。在应用操作部分,配合方法部分的各章内容介绍基于R的算法与编程实践。*后本书还附录了与生态学数据密切相关的频率论与贝叶斯统计的基础知识。
《概率论札记》是作者的 工程数学系列札记 的第四本。前三本分别是《矢算场论札记》(2007)、《复变函数札记》(2011)、《矩阵论札记》(2014)。尽管四本书所涉及领域完全不同,但却有着完全一致的目标,即想建立某种工程数学类型,使读者能自如跨越数学与工程之间的桥梁。 《概率论札记》的核心主题是概率,研究的目标是*事件的统计规律。用一句话概括,即*事件反映单体的不可预洲性,而统计规律反映群体的频率稳定性。 《概率论札记》包括慨率论基础、*量分布和数字特征、大数定律、抽样分布到统汁回归等。书中讨论了慨率论的应用实例,丰富的附录可以给广大工程技术人员带来很大的方便。 《概率论札记》适合广大理工科本科生、硕士和博士研究生学习使用。还可以作为相关专业科技与工程技术人员的入门读物和工具书。
本书是在自然公理系统中建立概率论的*部著作.本书前五章建立因果空间、*试验、概率空间、条件概率捆和独立性的理论,重点介绍离散型、Kolmogorov型、独立乘积型概率空间,形成概率论的基础理论.《BR》第6、8章论证*变量、*向量和宽*过程是科学实验中子*局部的数学模型;应用概率论基础理论介绍因果结构图、各种条件分布函数和独立性,建立数学期望、方差和协方差等数字特征的知识,形成*变量和*向量的基本理论,以及*过程的初步知识;*后两章介绍两类*重要的统计规律——大数定理和中心极限定理.《BR》
本书是威廉 费勒院士的经典名著《概率论及其应用导论》的第2卷,本卷延续第1卷的风格,运用更深的数学,将讨论的范围从离散样本空间扩展到连续样本空间,主要内容有:测度论基础、概率分布、基本极限定理、特征函数、大数定律、中心极限定理、无穷可分分布、随机过程、更新理论、半群方法、傅里叶方法、拉普拉斯变换和调和分析等。书中还涉及了概率论在物理学、化学、生物学(特别是遗传学)、医学、天文学、博弈论、排队论、数理统计、交通运输、电信工程、经济学和人口学等领域的应用。除正文外,本书还附有数百道习题及答案。本书适合高等院校广大理工科学生泛读及概率论相关研究人员精读。