本书简明地阐述了模糊数学的基本理论和基本方法。全书共ll章,内容包括F集合、F模式识别、F关系与聚类分析、F映射与综合评判、扩张原理与F数、F逻辑、F语言与F推理、F控制、F积分与可能性理论、F概率和F规划,书后附录介绍了集合及其运算、映射、关系与格等预备知识。根据工科院校的特点,还介绍了应用于各专业领域中较成熟的实例。各章配有习题,书后附有答案及提示。 本书可作为工科硕士研究生、工程硕士研究生的教材,或可作为经济类、管理类、机电类、信息科学、计算机科学类各专业高年级本科生或研究生的教材,亦可作为有关工程技术人员的参考书。
《建模的数学方法与数学模型》内容共分九章:章是数学模型概论,第二章是初等方法建模,第三章是微分法建模,第四章是差分方法建模,第五章是微分方程定性理论分析建模,第六章是线性规划方法建模,第七章是动态规划方法建模,第八章是层次分析法建模,第九章为图论方法建模。附录中给出了《建模的数学方法与数学模型》大部分图形的MAlLAB程序代码,以便更好地对图形验证分析。 《建模的数学方法与数学模型》可作为高等院校本专科生数学建模课程教材、数学建模竞赛培训课程的教材,也可供高校师生和相关科技工作者参考。
经典科学革命理论中另一个被广泛征引的观念是科学共同体对某一理论或学说的认同。就控制论思潮的萌动及其终由二战所催生而言,确实体现了科学群体的共意,然而在其后一段较长的传播过程中,在控制论所涉及的不同知识领域,以及在不同的国家中,却出现了一些协调甚至相当诡异的现象。 本书笔者尝试从传播的角度,选取控制论发生和传播鼎盛的1940—1970这三十年时间,集中对这一学科理论在美国的发生和发展,以及它在两个社会主义国家——苏联和中国的传播状况作个案分析。行文采取变焦分析的手法展开对控制论的考察,以图揭示控制论作为一门横断型学科,其发生发展的自身规律,以及意识形态何以影响它的传播,控制论发展的内在规律又如何在国际政治和意识形态下对理论传播发挥作用。
今天,一方面,人类的资源越来越紧张,另外一方面,人类生存权利平等、生命价值高于一切等等,渐渐成为普遍价值。这样,如何在竞争的世界中合作共赢越来越被人们所重视。 然而,合作不仅仅是一个态度问题,更重要是方法问题。博弈论是关于理性人竞争与合作的理论,然而博弈论没有给出解决博弈困境以及如何合作的方法。本书利用博弈理论,分析如何在竞争性博弈中做到合作,以及在非竞争性的博弈即联盟博弈中,如何实现合作。本书利用大量具体案例深入浅出地阐述博弈中参与人“如何避免更糟”、“如何寻求更好”、“如何走出必然的困境”、“如何共存”等等合作的具体方略。 本书可看做是共赢的行动指南或行动方法论。
本书从经济学、管理学的角度,系统地介绍了运筹学的重要分支,主要内容包括线性规划、对偶理论、运输问题、目标规划、整数规划、非线性规划、动态规划、图与网络分析、网络计划、排队论、存储论、对策论、决策分析等。本书尽量避免复杂的理论证明,力图通俗易懂、简明扼要地讲解运筹学的基本原理及其方法;试图以各种实际问题作为背景引出运筹学各分支的基本概念、模型和方法,并侧重各种方法及其应用。为便于读者自学,各章末均设有本章小结,以及供读者巩固提高的练习题。书末附有部分习题参考答案。 本书可作为经济类、管理类各专业的本科生、研究生教材,也可供各类管理人员及相关人员参考。
本书从培养经济管理人才应具备的运筹学知识、能力出发,系统介绍了运筹学中的线性规划、线性规划的对偶问题、运输问题、目标规划、整数规划、图与网络模型、动态规划、存储论、排队论、决策分析和博弈论,共包括十一章的内容。课时需要72学时。学时少的院校,可根据专业特点选学其中部分内容。 本书主要是针对经济管理类本科层次的学生编写的,同时也兼顾了应用数学专业学生,还可以作为研究生的参考书。本书具有以下几个特点: (1)在不失科学性和逻辑性的前提下,叙述较为通俗、简洁,减少了复杂的数学推导和证明,降低了经济管理类学生学习的困难。书中有大量的经济管理问题的实例,通过学习可提高学生的建模能力。 (2)书中吸收了近年来国内外运筹学教材中的长处和精华,也加入了运筹学的一些新进展。例如在图和网络模型中的统筹方法
本书是经济管理类各专业适用的运筹学辅导教材。本书包括两个部分:部分是运筹学各章节习题类型归纳与解析;第二部分是运筹学习题库,这部分的题全部都给出了正确的答案,有的还给出了解题的全过程,为学习运筹学的同学们提供了极大的选择空间。本书题材和习题取自全国高校广泛使用的清华大学出版社出版的《运筹学》和人民大学出版社出版的《运筹学通论》。 本书两个部分内容安排合理,便于学习运筹学的各个层次的同学们自学,亦可作为运筹学教学参考书。
由中国运筹学会编著,介绍了运筹学学科发展情况,并对本学科的进展做了全面而准确的总结。学会对所负责的学科发展研究初稿进行研讨及学术交流后,为研究成果的后完成提出实质性修改意见和建议。整套丛书的特点:,确保权威性,注重研究工作的质量,确保研究报告为反映各学科发展情况的*权威性的指导性丛书;第二,体现前瞻性,学科涉及面较大的不要求面面俱到,应注重体现*热点、前瞻和重大学术进展;第三,将2007年第四季度学科发展的内容纳入进去,做到严谨、完整;第四,时效性好;第五,整体性强。
《统计学实验与实践》的主要特点如下: ,注重与实际结合。首先,部分用于理论知识巩固的习题直接来自或改编于近年的统计从业资格考试和统计师考试的有关试题。其次,在理论知识的巩固与实验实践技能的训练中,都加入了一些现实生活中的实际问题。 第二,注重统计思想和统计方法应用自觉性的培养。首先,注重在每个基础实验中进行统计思想的培养,力争避免成为软件的使用说明书。在具体实验的指导上,除了具体完成步骤的指导之外,同时对问题先作简要的思路分析,对实验结果呈现的事实作出解读。其次,结合现实社会经济数据或者采用计算机模拟辅之以适量拓展训练,以期按照当前统计学教学改革要求,重点培养学生的统计思想,引导学生思考问题,动手解决问题,提高实验效果,锻炼实践能力。 第三,注重实践技能训练的循
《运筹学》是高等院校理工科、管理学科和经济学科等学科各专业学生的必修课和专业基础课,也是这些专业硕士研究生入学考试的一门考试科目,也是参加全国大学生数学建模竞赛的选手的必修课程。它在自然科学、社会科学、金融、经济学等各方面都有着广泛的应用。为了帮助广大大学生扎实地掌握运筹学的精髓和解题技巧,提高解答各种题型的能力,我们根据清华大学编写的《运筹学》(修订版)编写了本书。 全书由以下几个部分组成: 1.概念、定理及公式:列出了各章的基本概念,重要定理和重要公式,突出了必须掌握或考试中出现频率较高的核心内容。 2.重点难点祥解:教材中课后习题丰富、层次多,许多基础性知识可以从各个角度帮助学习者理解基本概念和基本理论,因此,我们对课后习题全部给出了详细的解答。 3.典型例题精解:
《经济管理实验实训系列教材:大学数学建模与实验基础》介绍了数学建模和数学实验的基本概念及基本方法。主要内容为大学数学(微积分、线性代数及概率统计)的基本实验及基本模型,同时介绍了相关的数学实验和数学建模的相关方法和工具,并附有优秀的数学建模论文。 《经济管理实验实训系列教材:大学数学建模与实验基础》通俗易懂,只需具备大学数学的基本知识,便可读懂本书。通过本书的学习可使读者对数学建模和数学实验快速入门,掌握数学建模和数学实验的基本方法,具备数学建模和数学实验的基本能力。《经济管理实验实训系列教材:大学数学建模与实验基础》可作为数学建模和数学实验的启蒙书及相关的培训教材,也可作为数学建模和数学实验工作者的参考书。
孙志忠编著的《计算方法与实习学习指导与习题解析(第2版)》是全国优秀畅销书《计算方法与实习》一书的全部习题解答,涉及误差分析、方程求根、线性方程组数值解法、插值法、曲线拟合、数值积分与数值微分、常微分方程数值解法和矩阵特征值及特征向量的计算。书末附一份模拟试卷及其参考答案。 《计算方法与实习学习指导与习题解析(第2版)》可作为理工科大学生学习计算方法课程的参考书。
本书为应用型本科院校《数学建模》普及性教育教材。内容包括数学建模概论、日常生活中的数学模型、微分方程模型、*化模型、初等概率模型、图论初步及其应用、层次分析法及其应用等七章。各章配有适量的练习题,书末附有练习题参考解答或提示。本书特点;难易度比较适中,符合应用型本科院校大学生的数学基础;问题提法比较新颖,符合时代气息;问题研究具有实际意义或理论价值;问题分析透彻,通俗易懂,趣味性强,便于自学。 本书可作为应用型本科院校理工科及经济类各专业《数学建模》课程的教材,也可供参加全国大学生数学建模竞赛的学生、数学爱好者及科技工作者参考。
《酒店前厅服务与管理实训教程(21世纪普通高等院校实训教材)》主要针对酒店前厅工作任务和工作过程的实际情况进行分析、归纳和总结,在此基础上以能力为导向,以培养与酒店前厅服务与管理工作能力相关的知识、技能、行为态度和职业经验为目标,让学生学习前厅服务和管理的基础理论后,系统地参与到酒店前厅系列实训项目中,从而培养和训练学生的实践能力。 《酒店前厅服务与管理实训教程(21世纪普通高等院校实训教材)》由宋秋、唐恩富编著。
本书根据我国管理类、财经类专业的教学要求,选取了运筹学中线性规划、目标规划、整数规划和网络分析等分支作为本科生运筹学课程的教材。每章末配有习题,书末附有部分习题答案。本书可作为管理、财经和理工科等方面有关专业的教科书或教学参考书,也可供广大企业管理人员和财经部门的管理人员以及工程技术人员阅读和参考。
由*高教司和中国工业与应用数学学会主办的全国大学生数学建模竞赛一直受到广大同学的热烈欢迎,不断健康地向前发展,有利于培养学生解决实际问题的能力、创新意识及合作精神,有力地促进了高等院校的教学改革,已经发展成为国内规模*的大学生学科性竞赛活动。本书第四版在2008年第三版的基础上进行了补充与修订,收集了1992年以来有关竞赛的文件、赛题、参赛及获奖情况、组织工作经验及学生收获等,是对我国大学生数学建模竞赛20年来发展历程的初步总结。 本书可供组织和参加数学建模竞赛的师生参考,也可供有关教育行政人员等查阅。
本书系统介绍互连网络拓扑结构设计和分析中的基本组合理论和方法。内容包括网络与图论的基本概念,网络性能的基本度量;网络设计的基本原则和方法(如线图,Cayley和笛卡儿方法);某些著名的网络拓扑结构(如超立方体网络,de Brujin网络,Kautz网络,循环网络等)和它们的基本结构性质以及各种推广;容错网络分析中的基本度量参数(如路由转发指数、容错直径、宽直径、限制直径、距离控制数、限制连通度)的基本理论、研究进展和*成果。 本书可作为高等学校和研究所计算机、网络通信和应用数学专业研究生的阅读,还可供从事理论计算机和互连网络的研究人员、工程技术人员和爱好者参考。
孙志忠编著的《计算方法与实习学习指导与习题解析(第2版)》是全国很好畅销书《计算方法与实习》一书的全部习题解答,涉及误差分析、方程求根、线性方程组数值解法、插值法、曲线拟合、数值积分与数值微分、常微分
本书叙述算子代数的基本理论。关于von Neumann代数(ω*-代数)介绍了基本概念、拓扑方面的分析、分类理论、因子理论、Tomita-Takesahi理论、von Neumann代数的 Borel空间以及约化理论等。关于c”-代数介绍了基本概念、GNS构造、*表示理论、公理的理论、张量积理论以及(AF)代数等。 本书可供数学专业的研究生、大学教师以及研究工作者阅读和参考。
《运筹学导论(0版)》作为运筹学领域的佳作,是美国多所高校的运筹学教材用书,销售量一直名列前茅。原著作者长期从事运筹学的教学和科研工作,是业界的佼佼者。原著具有内容翔实、专业性强、应用价值高等特点,对靠前同类著作产生了重大影响。翻译出版该著作,对于丰富和发展我国军事管理学和运筹学理论和方法体系,完善军事管理学的定量研究手段,具有较大的理论价值和实践意义。译著可作为运筹学、管理学、系统工程等专业的教材,也可作为从事军事管理、经济管理等领域的研究人员的参考用书。
本书系统地介绍了线性规划、整数规划、动态规划、图与网络分析等运筹学各分支的主要理论和方法,全书共分为8章,内容包括:线性规划基础、单纯形法、对偶理论、灵敏度分析、运输问题、整数规划、动态规划、图论与网络分析。各章开头点明本章学习目标和学习要点:内容上注意结合生产生活实际,有较强的实用性;各章后附有丰富的典型例题和案例分析,以帮助读者复习基本知识和检查学习效果。 本书可供应用型本科院校经济管理类专业和其他理工类专业的本科生作为教材使用,也可作为工程技术人员和经济管理人员的参考用书。