本书系统地介绍运筹学中的主要内容,重点陈述应用最为广泛的线性规划、对偶理论、整数规划、非线性规划、动态规划、图与网络、决策分析、博弈论、库存论、排队论与模拟等定量分析的理论和方法。阅读本书只需微积分、线性代数与概率统计的一些基本知识。本书是教学改革项目“基于信息技术平台的运筹学立体化教材”的成果,配备有完整和立体化教学包,包括教师手册、多媒体课件、习题案例答案、补充习题及其答案、教学案例库、考试测评系统、在线支持等。
“高等运筹学”是系统科学、应用数学、管理科学与工程、信息科学等众多学科博士、硕士研究生的一门必修的应用基础课程. 通过本书的学习, 使学生比较系统地掌握运筹学的基本理论, 了解前沿领域与某些应用背景, 培养学生应用课程所学知识解决现实工程和管理中碰到的最优化、平衡、综合评价、决策分析等问题, 使学生能够根据具体的应用问题建立运筹学模型, 提高学生的理论分析能力、数学建模及求解能力. 本书是在本科“运筹学”课程基础上, 提高理论起点, 以泛函分析、凸分析、高等概率统计为数学基础, 结合经济学、金融学、风险管理、多目标决策、多因素评价、计算机网络、无线通信等相关学科分支的应用背景, 全面提高学生的理论基础和建模水平. 内容主要包括Hilbert空间上的最优化理论、随机决策基础、效用理论、多准则决策与群决策、博弈论和复杂
《美国MCM/ICM竞赛指导丛书:美国大学生数学建模竞赛题解析与研究(第4辑)》是以美国大学生数学建模竞赛(MCM/ICM)赛题为主要研究对象,结合竞赛特等奖的优秀论文,对相关的问题做深入细致的解析与研究。《美国MCM/ICM竞赛指导丛书:美国大学生数学建模竞赛题解析与研究(第4辑)》针对2003年及2004年MCM/ICM竞赛的6个题目:特技演员的安全问题、伽马刀治疗方案问题、航空行李扫描策略问题、指纹的性问题、快速通过系统设计问题以及校园网安全措施的优化配置问题进行了解析与研究。 《美国MCM/ICM竞赛指导丛书:美国大学生数学建模竞赛题解析与研究(第4辑)》内容新颖、实用性强,可作为指导学生参加美国大学生数学建模竞赛的主讲教材,也可作为本科生、研究生学习和准备全国大学生、研究生数学建模竞赛的参考书,同时还可供研究相关问题的
本书根据我国管理类、财经类专业的教学要求,选取了运筹学中线性规划、目标规划、整数规划和网络分析等分支作为本科生运筹学课程的教材。每章末配有习题,书末附有部分习题答案。本书可作为管理、财经和理工科等方面有关专业的教科书或教学参考书,也可供广大企业管理人员和财经部门的管理人员以及工程技术人员阅读和参考。
本教材充分考虑到运筹学的学科特点,问题都来源于当今信息时代的实际案例,并上升到理性,再回到实践中去,解决实践中的问题。积极尝试运用新的思维和科研成果改进教材内容。根据运筹学课程在相关专业能力体系中的作用,希望本教材能够在知识维度提供优化理论和方法,在能力维度能够培养学生解决实际优化问题的能力、推理和分析能力、定量分析问题解决问题的能力、系统分析问题的能力;在态度维度能够更理性的认识问题,学会用数学的语言来描述一个实际问题。本书适合作为普通高等院校开设“运筹学”课程的教材或参考书。
孙志忠编著的《计算方法与实习学习指导与习题解析(第2版)》是全国优秀畅销书《计算方法与实习》一书的全部习题解答,涉及误差分析、方程求根、线性方程组数值解法、插值法、曲线拟合、数值积分与数值微分、常微分方程数值解法和矩阵特征值及特征向量的计算。书末附一份模拟试卷及其参考答案。 《计算方法与实习学习指导与习题解析(第2版)》可作为理工科大学生学习计算方法课程的参考书。
本书为主教材配套使用的习题集,作者针对此次再版《运筹学》的学习内容编写了每一章的习题及答案,共十二章,其中上篇为八章,下篇为四章。再基于主教材上、下篇的划分,在上篇结束部分编写了上篇知识点练习题及上篇知识点练习题答案;在下篇结束部分编写了下篇知识点练习题及下篇知识点练习题答案。另外,在本习题集的*后,在总结历年研究生考试题特点的基础上,编写了10余套综合模拟题及综合模拟题答案。本书适合与主教材配套使用,同时由于主教材被列为18年西南交大硕士研究生考试指定参考教材,也可供参加研究生考试的学生学习参考。
本书是解放军信息工程大学信息工程学院参加全国大学生数学建模竞赛获奖论文的第二卷,主要是从该院2006~2011年获全国一等奖的论文中精选出的18篇优秀论文编辑整理而成,同时收录了本书主编作为命题人撰写的两篇评述文章,即共收录20篇论文,截至2011年解放军信息工程大学信息工程学院在全国大学生数学建模竞赛中获得一等奖40多项,二等奖50多项,其中第一卷收录19篇,本卷收录的论文都是从近6年中获奖论文中精选出来的有创造性和代表性的优秀论文。每篇论文都按照竞赛论文的写作要求,包含论文的摘要、问题的重述、问题的分析、模型的假设与符号说明、模型的建市与求解、模型的分析与检验、模型的评价与改进方向等内容,基本保持了参赛论文的原貌,在每篇论文后面编者都给出了简要的点评。最后,在附录中给出了2006~2011年全国大学生数学建模竞
《运筹学(第2版)》是介绍运筹学的一些重要分支的基本理论和方法的基础教材,注重培养学生运用运筹学的方法分析和解决实际问题的能力,内容包括线性规划、动态规划、网络规划、决策与对策、存储问题、实验指导与运算软件6个部分,共10章。书中除了有大量例题外,还附有一定数量的习题。 《运筹学(第2版)》前9章增加了应用案例、关键词及其英文对照两部分,补充了习题内容;第10章介绍了常用的matlab命令及相关函数和表达方法,winqsb软件、lingo软件及其使用方法,为满足不同实验环境提供了参考。 《运筹学(第2版)》侧重于实际问题的建模和计算,可作为高等院校理工科运筹学课程教材,也可供从事实际工作的工程技术人员以及管理人员、企业家、商业经营者等学习参考。
运筹学的根本目的是寻找解决形形色色的实际问题的一个“解”,运筹学是软科学中“硬度”较大的一门学科,兼有逻辑的数学和数学的逻辑的性质;运筹学的学习和入门不需要艰深的数学知识做基础,仅需微积分、线性代数和概率论的一些基本知识。 《运筹学教程》共分13章,内容包括线性规划、对偶理论、整数规划、运输问题、多目标规划、目标规划、动态规划、非线性规划、图论、决策论、对策论、存贮论、排队论、统筹方法等。各章都附有练习题,并提供了较详细的参考答案.附录介绍了当今流行的计算化问题的LNCO软件。 《运筹学教程》可作为财经类专业本科生、研究生的必修或选修运筹学课程的教材,也可作为相关领域读者学习运筹学的参考书。
《运筹学原理与算法》与现行的其他运筹学教材相比,不涉及非线性规划,但增加了网络*选址问题,扩充了网络规划和分配问题的内容。对一些经典运筹问题,补充了一些运筹理论,还补充了一些更加简便、实用的运筹算法。《运筹学原理与算法》的另一个特点是,把运筹方法的程序设计纳入教学内容中,详细、完整、规范地给出了各种运筹方法的算法步骤。 《运筹学原理与算法》是针对应用数学专业本科生编写的教材,也可作为经济管理、系统工程、计算机工程等专业的本科生教材,还可供相关专业研究生及科技工作者参考。
《运筹学(21世纪高等院校公共课精品教材)》(作者岳宏志、蔺小林)根据运筹学的学科特点,在借鉴国内外运筹学教材优点的基础上,对传统运筹学的内容和方法做了较大的改革。全书分十三章,系统介绍了线性规划、运输问题、整数规划、目标规划、动态规划、图与网络分析、存储论、排队论、对策论以及决策论等运筹学的十大经典分支内容。《运筹学(21世纪高等院校公共课精品教材)》从实用的角度出发,采用易教、易懂和易操作的方式,系统地介绍了运筹学的基本理论、基本思想及基本方法,并以经济、金融和管理等方面的大量实例为背景,详细讲解了运筹学模型的建立和应用。全书内容力求通俗易懂,淡化理论推导而侧重于实际应用。每章均配有习题,分为基础题与提高题两部分,便于不同水平的学生课后训练。本书基本概念清晰,基本原理深入浅出,基
本书系统介绍锥约束优化的**性理论与增广Lagrange方法,主要内容包括变分分析的相关基础、约束集合的切锥与二阶切集、对偶理论、非线性锥约束优化的一阶**性条件和二阶**性条件、三类重要的锥约束优化的**性条件、凸规划的内点算法以及非凸半定规划的增广Lagrange方法的收敛速度估计等.
本书系统论述离散时间排队的思想原理和主要结果,建立了一个完整的理论框架.内容包括Markov 型、Geom/G/1 型、GlIGeom/c 型、D-BMAP/G/1 型等各种离散时间排队系统的建模和分析,并简要介绍了离散时间排队网络.除经典模型外,还详细讨论了近些年出现的休假和工作休假离散时间排队系统,并包含计算机通信网络和卫星通信系统性能分析的应用实例.其中部分内容是作者近年来的研究成果.本书叙述深入演出、论证严谨、图文并茂,注意先进性、系统性和实用性.
《高等学校教材:数学实验与数学建模案例》主要分为两个部分:*部分是数学软件与数学实验,主要是结合高等数学内容及其实验教学介绍MATLAB和Mathematica软件及其数学实验,结合数学建模教学介绍LINCO软件及其数学实验;第二部分是数学建模与建模案例,主要是概述数学建模及全国大学生数学建模竞赛,根据多年数学建模的教学经验,结合老师的部分科研成果,给出了若干数学建模案例。 《高等学校教材:数学实验与数学建模案例》可作为高等学校数学实验与数学建模课程的教材,也可作为参加全国大学生数学建模竞赛的辅导材料。
本书对当代博弈理论的主要内容和*发展进行了系统而全面的介绍。全书分为三部分,部分为章至第五章,主要讨论完全信息博弈理论,包括章导论,第二章、第三章的完全信息静态博弈及其经典模型以及第四章和第五章的扩展式博弈及其重复博弈。第二部分主要讨论非完全信息博弈理论,由第六章的贝叶斯博弈和第七章的贝叶斯扩展式博弈所组成。第三部分则包含第八章,主要介绍博弈理论的一些新的扩展。本书*的特点是:在不失严谨的条件下,力求通俗易懂;讲求扎实的理论学习,但突出运用;帮助学生边学边用,用与学相互促进。相信本书不仅能训练经济学专业学生的经济分析能力,对于其他读者同样能有所助益。
《数学建模》主要根据“数学建模”课程的教学和数学建模竞赛培训活动的实际需要,以及作者多年从事相关工作的实践经验和体会编写而成。 内容包括:概论;初等数学模型;数学规划模型;微积分模型;微分方程模型;稳定性模型;层次分析法模型;差分方程模型;生态系统的*捕获问题的数学模型;具有收获率的三种群数学模型以及常用数学建模软件。各章均有一定量的习题。建模方法由浅人深,适合数学、应用数学、信息与计算科学、生物工程及资源环境等理工专业本科生、研究生作教材,也适合建模竞赛培训作教材,以及供从事相关研究的科技人员参考。
运筹学是用数学方法研究各种系统的*化问题,是系统工程的基础理论之一,运筹学强调发挥现有系统的效能,应用数学模型求得合理利用各种资源的*方案,为决策者提供科学决策的依据。 本书系统地介绍了运筹学的基础理论和常用方法,着重培养学生分析问题和解决问题的能力,理论与实践相结合的能力,将实际问题抽象成数学模型的能力,以及定量分析和计算的能力,为学生未来从事经营管理或科学研究工作打好良好的基础。本教材紧跟时代步伐,汇集了国际上相关领域的*观点、内容、原理和方法;以培养能力为目标,吸收了国内外教材的众多优点。可作为经济管理类专业本科生的教材,也可供大专院校师生和经济管理人员参考和阅读。
本书详细阐述脉冲微分系统的理论及*研究成果,主要包括具有界滞量或无穷延滞的脉络泛函微分系统的基本理论,脉冲微分系统的几何理论、稳定性理论和边值问题,以及脉冲偏微分系统的振动理论等。 本书可作为理工科大学数学系、应用数学和其他有关专业的大学生、研究生、教师以及有关的科学工作者的参考书。