如果你是一个有 数学焦虑症 的人,你可能不会相信有一天你会爱上数学。 原因在于,我们在学校所学的数学知识看上去不过是一堆沉闷的规则、定律和公理,都是前人传下来的,而且是不容置疑的。在《魔鬼数学》中,世界知名数学家乔丹?艾伦伯格告诉我们这样的认识是错误的。数学与我们所做的每一件事都息息相关,可以帮助我们洞见在混沌和嘈杂的表象之下日常生活的隐性结构和秩序。数学是一门告诉我们 如何做才不会犯错 的科学,是经年累月的努力、争论所锤炼出来的。 你应该提前多长时间到达机场?民意调查的结果真的能代表人们的意愿吗?为什么父母都是高个子,孩子的身高却比较矮?用什么策略买**才能中大奖?《魔鬼数学》运用数学方法分析和解决了很多的日常生活问题,帮助数学门外汉习得用数学思维思考问题的技能。 作者用数
A.H.施利亚耶夫编著的《*金融数学基础(第1卷事实模型)》原版自1998年出版以来,被认为是“*金融数学方面深刻的一本著作”。全书共分两卷。每一卷都包含四章。卷的副题为:事实·模型。第二卷的副题为:理论。这两卷的内容既相互联系。又相对独立。读者可把本书看作一本“*金融数学全书”。 卷的章有关国际金融市场以及金融理论和金融工程的“事实”。它可看作一位前苏联数学家对西方金融市场和金融理论、金融工程的独特理解。其中作者不但概述了金融市场的基本状况、金融学的基本概念以及Markowitz证券组合选择理论、资本资产定价模型《CAPM)、Ross套利定价理论(APT)、有效市场理论等。甚至还简要介绍了保险业和精算理论。 卷的后三章都有关金融学的*“模型”:离散模型、连续模型和统计模型。作者提出,Doob分解、局部鞅、鞅变换等概念
引力定律原本是解释和预测物体之间引力交互的一个基本物理定律,但有趣的是,人们发现在交通出行、人口迁移、商品贸易、信息通讯、科研合作等大量不同的社会交互现象中,空间交互的强度都近似服从引力定律。在过去的一百多年里,引力模型也被大量应用于地点之间人口、商品、交通、信息等流动量的预测工作中。但是,社会系统中的引力定律为什么存在?如何从*原理出发解释空间交互的引力模型?有没有比引力模型更准确、更普适的模
本书是根据*颁布的《理工科类大学物理实验课程教学基本要求》,结合大学物理实验仪器设备实际情况,在总结多年大学物理实验教学实践经验的基础上编写而成的。 全书共分4章,绪论部分介绍了物理实验的目的和任务、基本规则和要求,第1章介绍了测量误差理论、不确定度、实验数据处理方法等内容,第2章共9个基础实验,第3章共12个近代物理与综合应用性实验,第4章共9个研究及设计性实验,用于学生第二课堂的自主学习,附录中给出了常用的物理参数。书中所有思考题都配有参考答案,大部分实验项目有配套视频,方便在线学习。 本书可作为高等学校工科各专业的大学物理实验课程教材和参考书。
《数学建模算法与应用(第2版)》作者根据多年数学建模竞赛辅导工作的经验编写《数学建模算法与应用(第2版)》,涵盖了很多同类型书籍较少涉及的新算法和热点技术,主要内容包括时间序列、支持向量机、偏很小二乘
本书介绍矩阵空间、λ矩阵与Jordan标准形、矩阵分析、矩阵微分方程、矩阵扰动分析和广义逆等矩阵论的基本内容,并讲述这些内容的基本理论和计算方法.
本书包含一百五十多道数学问题,这些问题主要与数学分析有关,还进一步扩展了 Bernoulli数、微分方程和度量空间的主题.书中同时给出了这些问题的解答,包括相关提示 和解题技巧,供读者理解与掌握.每一章都有一个要点总结,其中还有一些基本定义和结论, 包含了许多对数学分析中一些重要数学结果的简要历史评论以及参考文献。 本书可作为本科生在微积分和线性代数课程期间或之后的习题集,对学习解析数论也 具有一定的指导意义.
本书是根据作者多年的教学经验,在原有讲义的基础上经过修改、补充而成的。书中介绍了公钥密码学中涵盖的数论代数基本知识与理论体系:第1章至第6章分别介绍了初等数论基础知识,主要包括同余、剩余类、原根和连分数的基本理论以及在公钥密码中的应用等;第7章至第9章描述了群、环、域三个基本的代数结构及其性质;第10章介绍了与密码学相关的计算复杂性理论及基本数学算法;第11章简单介绍了格理论及格密码分析的基本方法。
在经济学中,绝大多数的非合作博弈理论集中研究博弈中的均衡问题,尤其是纳什均衡及其精炼。对均衡什么时候出现以及为什么均衡会出现。传统解释是,均衡是在博弈的规则、参与人的理性以及参与人的支付函数都是共同知识的情况下,由参与人的分析和自省所得出的结果。不论是在概念上还是在实证上,这个理论都存在许多问题。 在《博弈学习理论》一书中,朱·弗登伯格和戴维·K·莱文提出了另一种解释:均衡是并非完全理性的参与人随着时间的推移寻求*化这一过程的长期结果。他们研究的模型为均衡理论提供了基础,并为经济学家评价和改进传统的均衡概念提供了有用的方法。
作者根据多年数学建模竞赛辅导工作的经验编写本书,涵盖了很多同类型书籍较少涉及的新算法和热点技术,主要内容包括时间序列、支持向量机、偏*小二乘回归分析、现代优化算法、数字图像处理、综合评价与决策方法、预测方法以及数学建模经典算法等内容。 本书所选案例具有代表性,注重从不同侧面反映数学思想在实际问题中的灵活应用,既注重算法原理的通俗性,也注重算法应用的实现性,克服了很多读者看懂算法却解决不了实际问题的困难。 本书所有例题均配有Matlab或Lingo源程序,程序设计简单精炼,思路清晰,注释详尽,有利于没有编程基础的读者快速入门。同时很多程序隐含了作者多年的编程经验和技巧,为有一定编程基础的读者深入学习Matlab、Lingo等编程软件提供了便捷之路。 本书配有丰富的课件资源,包括教师授课PPT课件、主教材的程序和
《数学奥林匹克在中国》介绍了从1986年至2013年的国际数学奥林匹克竞赛在中国的发展情况,并着重介绍了从1986年以来历届国际数学奥林匹克竞赛的试题及解答技巧,后介绍了历届中国数学奥林匹克竞赛试题。 《数学奥林匹克在中国》适合准备参加高中数学奥林匹克竞赛的学生及辅导教师和广大数学爱好者参考阅读。
《华章数学译丛:数理金融初步(原书 3版)》清晰简洁地阐述了数理金融学的基本问题,主要 括 利、Black-Scholes期权定价 式以及效用函数、优资产组合原理、资本资产定价模型等知识,并将书中所讨论的问题的经济背景、解决这些问题的数学方法 基本思想 统地展示给读者. 《华章数学译丛:数理金融初步(原书 3版)》内容 择得当、结构 排合理,既适合作为高等院校学*( 括财经类 业及应用数学 业)的 材,同时也适合从 金融 作的人员阅读。
内容简介: 本书包括空间坐标和向量矩阵、数列、微分及其应用、积分及其应用、平面几何公理的构造等内容,且附有700道习题及详细解答. 本书取材丰富、命题新颖、结构紧凑,对中学生系统复习并灵活运用所学知识,加强基本功训练,增强解题能力有较大的帮助. 本书适合中学生及数学爱好者参阅.
本书包括空间坐标和向量矩阵、数列、微分及其应用、积分及其应用、平面几何公理的构造等内容,且附有700道习题及详细解答。 本书取材丰富、命题新颖、结构紧凑,对中学生系统复习并灵活运用所学知识,加强基本功训练,增强解题能力有较大的帮助。 本书适合中学生及数学爱好者参阅。
《金融数学》较系统地介绍金融数学中的一些核心理论知识, 内容包括金融产品介绍、期权定价的离散模型 二叉树模型、随机积分与布朗运动、期权定价的连续模型 欧式期权定价的Black-Scholes 模型及其推广、数值计算与模拟 蒙特卡罗方法和有限差分方法、奇异期权的介绍和数值解法、利率与债券模型等. 每章*后还配备适量的相关习题. 为了便于在实际中直接应用模型, 相关章节数值计算中还给出了代码实现思路, 读者可以自行利用 MATLAB 软件在计算机上实现.
本书旨在指导学生初步掌握数学建模的思想和方法,共分两大部分:离散建模和连续建模,通过本书的学习,学生将有机会在创造性模型和经验模型的构建、模型分析以及模型研究方面进行实践,增强解决问题的能力。本书对于用到的数学知识力求深入浅出,涉及的应用领域相当广泛,适合作为高等院校相关专业的数学建模教材和参考书,也可作为参加外数学建模竞赛的指导用书。