如果你是一个有 数学焦虑症 的人,你可能不会相信有一天你会爱上数学。 原因在于,我们在学校所学的数学知识看上去不过是一堆沉闷的规则、定律和公理,都是前人传下来的,而且是不容置疑的。在《魔鬼数学》中,世界知名数学家乔丹?艾伦伯格告诉我们这样的认识是错误的。数学与我们所做的每一件事都息息相关,可以帮助我们洞见在混沌和嘈杂的表象之下日常生活的隐性结构和秩序。数学是一门告诉我们 如何做才不会犯错 的科学,是经年累月的努力、争论所锤炼出来的。 你应该提前多长时间到达机场?民意调查的结果真的能代表人们的意愿吗?为什么父母都是高个子,孩子的身高却比较矮?用什么策略买**才能中大奖?《魔鬼数学》运用数学方法分析和解决了很多的日常生活问题,帮助数学门外汉习得用数学思维思考问题的技能。 作者用数
本书旨在指导学生初步掌握数学建模的思想和方法,共分两大部分:离散建模和连续建模,通过本书的学习,学生将有机会在创造性模型和经验模型的构建、模型分析以及模型研究方面进行实践,增强解决问题的能力。本书对于用到的数学知识力求深入浅出,涉及的应用领域相当广泛,适合作为高等院校相关专业的数学建模教材和参考书,也可作为参加国内外数学建模竞赛的指导用书。
本书在不损数学本身的严密性和精确性的前提下,打破了经济学和数学分别教学的常规,将经济学与数学有机结合在一起,不但清晰地表达了相关的数学主题,而且比较完美地将这些主题与经济问题相结合,其侧重点在于教会学生利用数学知识解决相关的经济问题。本书第二版也由我社出版,共发行6000册。
数学不仅有抽象的计算和公式,还与人类文化和思维紧密相关。 数学对生活的影响无处不在,它甚至可以改变我们对世界的认知。原来数学和语文、美术、科学这些学科竟然密不可分。用故事串起数学明珠,带你畅游神秘数学王国,书中每一页都充满惊喜与挑战!从电影里幸存者的故事,到游戏中藏着的概率,再到战争中的密码学,都有数学在其中起作用!不仅如此,数学还有属于自己的美学和哲学。它像艺术家一样创作美丽的图案,像哲学家一样思考世界,像诗人一样描绘世界,像侦探一样揭破谜案。 加入这场数学派对,你会发现:数学或许不是你以为的那样,它不仅不枯燥,还蕴藏着无限的乐趣。
A.H.施利亚耶夫编著的《*金融数学基础(第1卷事实模型)》原版自1998年出版以来,被认为是“*金融数学方面深刻的一本著作”。全书共分两卷。每一卷都包含四章。卷的副题为:事实·模型。第二卷的副题为:理论。这两卷的内容既相互联系。又相对独立。读者可把本书看作一本“*金融数学全书”。 卷的章有关国际金融市场以及金融理论和金融工程的“事实”。它可看作一位前苏联数学家对西方金融市场和金融理论、金融工程的独特理解。其中作者不但概述了金融市场的基本状况、金融学的基本概念以及Markowitz证券组合选择理论、资本资产定价模型《CAPM)、Ross套利定价理论(APT)、有效市场理论等。甚至还简要介绍了保险业和精算理论。 卷的后三章都有关金融学的*“模型”:离散模型、连续模型和统计模型。作者提出,Doob分解、局部鞅、鞅变换等概念
本书从信息科学的角度讲解离散数学,在保持数学体系完整性和数学内容严谨性的同时,用生动活泼的语言介绍离散数学四大分支(数理逻辑、集合论、抽象代数、冈论)的发展史及其与信息科学的紧密联系,用深入浅出的语言介绍离散数学的核心思想、基本概念和主要结论,同时介绍一些著名科学家的逸闻趣事,其目的是帮助读者在学习离散数学知识的同时了解其在信息科学中的应用,提高自身的科学素养和人文素养。
数据包络分析(data envelopment analysis,DEA)方法作为现代综合评价中较为常用的评价理论引起了学者、企业乃至政府的广泛关注;历经四十多年的发展目前已经形成了理论体系较为完善且应用范围非常广泛的具有多投入多产出问题相对有效性的评价方法。 本专著的各章具体安排如下:第1章对数据的搜集与标准化处理问题进行了介绍;第2章和第3章对数据包络分析方法中的CCR模型、BCC模型及其MATLAB求解算法展开了介绍;第4章对综合数据包络分析模型及其相关算法展开了介绍;第5章对广义数据包络分析方法及其相关算法展开了介绍;第6章对超效率、交叉效率及非径向数据包络分析模型及其MATLAB算法进行了介绍;第7章对网络数据包络分析模型及Malmquist指数展开了介绍;第8章对基于偏序集理论的数据包络分析方法及其MATLAB算法进行了介绍;第9章对基于博弈理论的数据包
《高级计量经济学》是雨宫健教授在长年担任Joural of Econmometrics主编之后编写的研究生层次的计量经济学教材,融合了计量经济理论研究的方法和技巧,也是一本值得计量经济学的专业人员认真阅读的计量经济学著作。在计量经济学理论研究的学术论文中,《高级计量经济学》是一本被广泛引用的参考文献,迄今为止的累计引用数高达3 200次以上。《高级计量经济学》着重讨论微观计量经济学涉及的各种理论问题,特别是在微观计量分析的定性模型的详细讨论中融入了作者的研究心得经验。《高级计量经济学》从经典小二乘法出发,结合拓展的各种回归分析方法,说明计量经济理论涉及的大样本理论,利用大样本理论讨论微观计量分析出现的极值统计量的性质及各种微观计量模型的统计推断问题。考虑到计量经济理论体系的完整性,《高级计量经济学》也适当介
由汪杰良编*的《激发学生学好数学的潜能--复 旦大学附属中学学生撰写数学小论文的实践》收集了 自2011年 复旦附中课程体系建设方案 实施以来, 该校学生在 数学欣赏 数学研究 选修课汪杰良 老师指导下,进行课题研究的成果。这些成果以数学 论文的形式发表在各类专业数学刊物上。 书中每篇论文都附有指导老师的点评,以及学生 撰写数学论文的心得体会,这是复旦附中学生坚持多 年以及汪老师坚持20年努力的结果。读者可以从中体 会到汪老师是如何激发学生学好数学的潜能,指导学 生撰写数学小论文的心路历程的。因此,本书对提高 高中学生的自主探索科学研究能力,进而促进素质教 育具有较大的意义,这是一本值得广大中学数学教师 和中学生研究学好数学的**读物。 本书可供高中学生及数学专业教师学习参考,也 可供中学生中数学爱好者学
《数学实验(MATLAB版 第4版)/普通高等教育 十二五 规划教材》是在贯彻落实* 高等教育面向21世纪教学内容和课程体系改革计划 的要求精神及-3版的基础上,按照工科及经济管理类 本科数学基础课程教学基本要求 ,并结合当前大多数本专科院校的学生基础、教学特点和教材改革精神进行编写的。全书以通俗易懂的语言,全面而系统地讲解数学实验的内容。全书共7章,章是绪论;第2 5章是基础实验部分,内容包括一元微积分实验、多元微积分实验、线性代数实验和概率论与数理统计实验;第6章是综合实验;第7章是数学建模初步。每章都以实验的形式将有关内容与MATLAB相结合,达到理论与实践的统一,便于读者学习和上机实验。每节后面有 练习题 ,每小节(或节)的例题(或实验)前有简要的 实验目的 ,并在附录中有MATLAB的基本操作。 《数学实验(MATLAB版
本书包含一百五十多道数学问题,这些问题主要与数学分析有关,还进一步扩展了 Bernoulli数、微分方程和度量空间的主题.书中同时给出了这些问题的解答,包括相关提示 和解题技巧,供读者理解与掌握.每一章都有一个要点总结,其中还有一些基本定义和结论, 包含了许多对数学分析中一些重要数学结果的简要历史评论以及参考文献。 本书可作为本科生在微积分和线性代数课程期间或之后的习题集,对学习解析数论也 具有一定的指导意义.
引力定律原本是解释和预测物体之间引力交互的一个基本物理定律,但有趣的是,人们发现在交通出行、人口迁移、商品贸易、信息通讯、科研合作等大量不同的社会交互现象中,空间交互的强度都近似服从引力定律。在过去的一百多年里,引力模型也被大量应用于地点之间人口、商品、交通、信息等流动量的预测工作中。但是,社会系统中的引力定律为什么存在?如何从*原理出发解释空间交互的引力模型?有没有比引力模型更准确、更普适的模
《华章数学译丛:数理金融初步(原书 3版)》清晰简洁地阐述了数理金融学的基本问题,主要 括 利、Black-Scholes期权定价 式以及效用函数、优资产组合原理、资本资产定价模型等知识,并将书中所讨论的问题的经济背景、解决这些问题的数学方法 基本思想 统地展示给读者. 《华章数学译丛:数理金融初步(原书 3版)》内容 择得当、结构 排合理,既适合作为高等院校学*( 括财经类 业及应用数学 业)的 材,同时也适合从 金融 作的人员阅读。
内容简介: 本书包括空间坐标和向量矩阵、数列、微分及其应用、积分及其应用、平面几何公理的构造等内容,且附有700道习题及详细解答. 本书取材丰富、命题新颖、结构紧凑,对中学生系统复习并灵活运用所学知识,加强基本功训练,增强解题能力有较大的帮助. 本书适合中学生及数学爱好者参阅.
本书是一本关于利用金融工程方法对衍生产品建立模型的理论教科书,主要内容是关于大多数衍生证券都共同适用的联定价原理。仔细分析通常在公平和有固定收益市场交易的金融衍生产品所涉及的广泛内容,主要集中在定价、对冲及其风险管理等几个方面。从著名的Black-Scholes-Merton期权定价模型开始,读者通过本书可以看到关于丰富的衍生产品定价模型和利率模型的新进展。书中重点介绍了求解不同类型衍生产品定价模型的解析技巧和数值方法。《BR》 第二版对版进行了大量的修订。在离散时间的框架内,通过对基本金融经济学原理的分析,使连续时间缺定价理论变得更生动。书中给出了大量的新型权益和有固定收益的衍生证券的闭式定价公式。在每章的后面通过习题的方式把许多近的研究成果和方法呈现给读者。《BR》 郭宇权是香港科技大学的数学教授
本书介绍了种群生态学研究中建立随机数学模型的方法、某些重要的随机模型以及它们的理论分析、已经得到的一些结果和一些尚未解决的问题,涉及生物数学中的许多重要问题,包括随机环境中单种群和多种群系统的持久性、灭绝性、吸引性、有界性、随机稳定性;依分布稳定性;可更新生物资源的开发、利用;随机环境下的生物保护区模型;污染环境中的生态系统的生存与灭绝问题;流行病的传播规律问题;神经网络的性质;随机均衡解和随机周期解的存在性、**性和稳定性的研究以及带有时滞的生态系统的研究等问题。某些模型和相关问题是作者及其合作者首次提出的,并由此得到一些全新的结果。
群体水平的传染病动力学研究己经有近百年的历史,其建模的基本假设是个体接触均匀混合,而实际个体相互接触是一个十分复杂的社会网络,因此,研究传染病的传播与演化动力学有必要考虑个体接触构成的社会网络。近十年,利用复杂网络来研究传染性疾病的传播己取得飞速发展,本书是将该方面近十年的研究成果加以系统化完成的,为读者提供网络上的传染病传播动力学的基础知识、前沿动态和研究方法。 本书主要介绍传染病动力学历史背景,复杂网络的基础知识,网络传染病动力学建模的基本思想和发展动态,不同网络结构下传染病动力学建模与分析技术,以及网络传染病随机动力学建模及分析,细胞自动机传染病动力学模型。在写作过程中,力求由浅入深,自成一体,注重建模思想与方法,注重网络拓扑结构,注重理论分析与应用。