《矩阵之美(算法篇)》对多种**矩阵算法进行了新颖、全面且深入的解读。具体而言,第1章从代数、几何、分析和概率等多个角度详细介绍了*小二乘法;第2章对主成分分析进行了深入解析,涵盖代数、几何、子空间逼近与概率视角;第3章探讨了一种新兴的非对称数据分析方法 主偏度分析,并深入剖析了其性质和理论内涵;第4章介绍了典型相关分析及其关键性质,并从几何角度对其本质进行了进一步的阐释;第5章聚焦于非负矩阵分解,探讨了其与混合像元分析、奇异值分解、聚类分析及KKT条件的关联;第6章重点介绍局部线性嵌入,并将其与其他典型非线性特征提取方法进行了系统比较;第7章深入介绍**的傅里叶变换,并从矩阵角度对其内涵进行了新的诠释;第8章介绍了一种新颖的一阶统计分析方法 连通中心演化,重点阐明其在数据中心识别方面的优势和潜
《分数阶积分和导数:理论与应用》是Stefan G.Samko,Anatoly A.Kilbas,Oleg I.Marichev所著英文专著Fractional Integrals and Derivatives:Theory and Applications的中文翻译版本。《分数阶积分和导数:理论与应用》阐述了几乎所有已知的分数阶积分-微分形式,并对它们进行了相互比较,强调了一个函数能否被另一个函数分数阶积分表出的问题,突出了已知函数的分数阶积分可表示性问题比它的分数阶导数存在性问题更为重要,揭示了在某种意义下,函数分数阶导数的存在性等价于其分数阶积分的可表示性,同时给出了分数阶积分-微分在积分方程和微分方程中的大量应用。此外,应原著作者要求,《分数阶积分和导数:理论与应用》增加了一个附录,介绍了第三作者及其合作者开发的分数阶微积分的计算机代数系统。
计算,实际上是解决问题的过程。人们希望用计算机能找到解决一切问题的方法,因此在计算领域建立了算法理论和算法模型,并根据各种问题提出具体算法。而计算的复杂性是现代数学中最令人着迷的领域之一。本书通过几个经典的计算问题:哥尼斯堡七桥问题、汉密尔顿路径问题、整数分解和国际象棋问题,浅探计算的魅力。
《凸优化的分裂收缩算法》以简明统一的方式介绍了用于求解线性约束凸优化问题的分裂收缩算法。我们以变分不等式(VI)和邻近点算法(PPA)为基本工具,构建了求解线性约束凸优化问题的分裂收缩算法统一框架。在该框架中,所有迭代算法的基本步骤包括预测和校正,分裂是指通过求解(往往有闭式解的)的凸优化子问题来实现迭代的预测;收缩指通过校正生成的新迭代点在某种矩阵范数意义下更加接近解集。统一框架既涵盖了**意义下的PPA算法、用于求解线性约束凸优化问题的增广拉格朗日乘子法(ALM)和处理两个可分离块凸优化问题的乘子交替方向法(ADMM)等耳熟能详的算法,还为多块可分离凸优化问题的求解提供了多种方法。通过掌握这一并不复杂的统一框架,者可以根据可分离凸优化问题的具体特点,自行设计预测-校正方法求解。
本书是关于积分方程的高精度算法的*本书.全书分为五章:*章阐述积分方程与积分算子以及相关的泛函分析理论,方便读者无需特殊准备便可以通读本书;第二章阐述数值积分,重点介绍多维积分与反常积分的外推和分裂外推方法,其中关于带参数的超奇积分的数值方法与外推是首次见于专著;第三、四、五章分别阐述Volterra型积分方程、Fredholm型积分方程和边界积分方程的高精度算法.本书取材新颖,与同类书的内容不雷同,所提供的算法具有计算复杂度低、精度高、并行度高和拥有后验误差估计等特点,适合从事积分方程和边界元计算的科研工作者和工程计算人员参考,也适合计算数学和应用数学的博士生、硕士生和本科高年级学生作为专业或参考教材.
本书主要继承了作者本人的剑桥小册子The?Zeta—function?of?Riemann的内容.本书内容主要包括:ζ(s)函数,狄利克雷级数与ζ(s)函数的关系,ζ(s)函数的分析特点,函数方程,近似公式,ζ(s)函数在临界带的次序.
微分代数方程是一个非常重要的研究方向,目前的科研非常活跃。该书是这一领域具有很高学术水平的著作,对国内从事该领域学习和研究的学生及科研人员将会有很高的参考价值。
ThisbookaddressesrecentdevelopmentsinmathematicalanalysisandcomputationalmethodsforsolvingdirectandinverseproblemsforMaxwell sequationsinperiodicstructures.Thefundamentalimportanceofthefieldsisclear,sincetheyarerelatedtotechnologywithsignificantapplicationsinopticsandelectromagnetics.Thebookprovidesbothintroductorymaterialsandin-depthdiscussiontotheareasindiffractiveopticsthatofferrichandchallengingmathematicalproblems.Itisalsointendedtoconveyup-to-dateresultstostudentsandresearchersinappliedandcomputationalmathematics,andengineeringdisciplinesaswell.
无
本书系统地论述了有限元方法的数学基础理论。本书以椭圆偏微分方程的边值问题为例,介绍了协调有限元方法以及非协调等非标准有限元方法的数学描述、收敛条件和性质、有限元解的先验和后验误差估计以及有限元空间的基本性质,其中包括作者多年来的部分研究成果。
本书系统总结了到本世纪初为止近似算法领域的成果,重点关注近似算法的设计与分析,介绍了这个领域中重要的问题以及所使用的基本方法和思想。全书分为三部分:部分使用不同的算法设计技巧给出了下述优化问题的组合近似算法:集合覆盖、施泰纳树和旅行商、多向割和k-割、k-中心、反馈顶点集、短超字符串、背包、装箱问题、时间跨度排序、欧几里得旅行商等。第二部分介绍基于线性规划的近似算法。第三部分包括四个主题:在一个格中找一个短向量、计数问题的可近似性、基于PCP定理的近似困难性以及未解决的问题等,这些问题都是近似算法领域中的前沿研究内容。本书可作为计算机科学、应用数学、运筹学、信息科学与网络工程、物流与交通运输、管理科学与工程、生命科学、电子科学与技术等学科专业的研究生及高年级本科生的教学用书,对相关领
本书系统介绍当前国际上发展的一种数值分析方法——数值流行方法与非连续变形分析。非连续变形分析(DDA)是平行于有限元的一种方法,它与有限元不同之处是可计算不连续面的错位、滑动、开裂和旋转等大位移动的静力和动力问题。在DDA基础上新发展的数值流行方法(NMM)是应用现代数学——流行的覆盖技术,将连续体的有限元方法、非连续变形分析方法和解析法统一起来更高层次的计算方法。这一方法可广泛用于固、液、气、三态的连续和不连续问题。是当前最有发展前景的新一代采矿、本书理论先进,叙述系统,公式推导齐全,便于与编程应用,可作为土木水利、铁道交通、市油采矿、军事工程等部门有关专业,以及数学力学和计算机应用专业的工程师、研究生、软件开发人员的和应用参考。
《边缘计算模式》共13章。第1章和第2章介绍边缘计算模式的相关概念和发展现状。第3~5章阐述边缘计算的新型框架,包括边缘联盟计算架构、混合边缘计算架构、移动节点辅助的边缘计算架构。第6~9章系统论述边缘存储理论与方法,包括边缘计算的数据协同存储和访问服务、数据缓存高效索引机制、跨层混合数据共享机制,以及安全可信的边缘存储架构。第10~13章系统论述边缘计算的任务调度理论方法,包括边缘计算的在线任务分派和调度方法、复杂依赖性应用分派和调度方法、服务链请求调度方法、服务增强模型。