面积法是一种有着悠久历史的传统方法。近几十年来, 面积法体系得到进一步的发展, 焕发出新的生命力, 如今已成为平面几何中的基本方法,甚*成为解决很多几何难题的通法。 本书介绍了用面积法解题的基本工具 (共边定理和共角定理) 以及指导思想 (消点法), 并辅以大量例题来说明用面积法解题的有效性。 另外, 书中还介绍了面积法与勾股定理、 托勒密定理等的关系, 以及面积法在不等式、 三角等多个数学分支中的应用。 本书以面积法为主线, 串接了许多有趣的数学内容, 适合中小学师生以及数学爱好者阅读。 我们很高兴看到读者对我们的认可。现在,我们对这本书进行了完善并重新出版,希望能对你学*几何有一点帮助 .
本书讲述了一种理解和学习微积分的新思路。书中通过探索微积分发展历程背后的数学动机,展现了这一数学基本工具的魅力。作者根据自己研究和教授微积分的丰富经验,结合多年从事中学和大学数学教育的心得体会,对传统的微积分教学方式,即大多按照从极限、微分、积分到级数的顺序进行学习的方法提出了异议,探讨了一种更有趣、更易被接受和理解的学习方法。作者写过不少富有启发意义的微积分教材,此次利用自己在教学与研究方面的特长,写成了这本内容丰富、风格有趣的 小书 。本书适合中学以上水平的数学爱好者、学生和教师阅读。
勾股定理应该是大家非常熟悉的数学定理,但你知道它在最初被发明时的作用吗?勾股定理早在古埃及时代就被用来测量土地的面积。数学中有非常多的数学定理,它们不仅是数学书中一连串用符号表示的公式,还与我们的日常生活息息相关。本书在介绍了许多比较重要的数学定理的同时,更强调了逻辑思维能力和解决问题能力的重要性。本书适合小学高年级和中学生阅读。
《数书九章》,由秦九韶撰著于南宋淳祐年间,虽旨在学以致用,并解决现实应用中的计算问题,但在当时并未産生足够的影响。历元明二代,甚至湮微。直到西学东渐的清代,才爲时人发掘整理,时至今日,被推为数学巨著,整理研究,纷至沓来,影响遍及中外,可谓“珠还合浦,历劫重光”。 本书稿整理,以清道光二十二年上海郁氏刊《宜稼堂丛书》本爲底本,校以明赵畸美钞本(省称“明钞本”)、文渊阁四库全书本(省称“四库本”)、国家图书馆藏清王萱龄钞本(省称“王钞本”)及《宜稼堂丛书》本附宋景昌《数学九章札记》?(省称“札记”),并将各版中有关条目的考订内容,汇集于各条之下,以便检阅。 对底本的校勘, 凡文字可通者,一律不作改动,而于校记中备列较有参考价值的异文;凡底本错误,有版本依据者则据以改之,无依据者则作疑误
此书是晚清中西文化交流的结晶,是日中英文化交流的合璧。书中所阐发的西方文化思想之精义,使当时人耳目为之一新;书中又包含着以儒家为主的中国文化精神。
在了解这个世界的过程中,现实经常会挑战我们的感官和直觉,让我们震惊不已。这时,数学*像一把雨伞,当撑开这把雨伞时,我们仿佛进入了一个奇特的境界,有了迈向真相、行走在谜团中的勇气;当收起这把雨伞时,我们会发现自己的认知已大不一样,所谓的“理所应当”和“显而易见”将被摒弃,现实背后隐藏的真相将带来巨大的启发。这*是数学的力量。 从代数、几何到相对论,从温度计到黑洞,作者用简洁而生动的笔触阐释了如何更好地思索、观察与理解世界。让我们带上好奇心,撑开数学这把大伞,在宇宙的奥秘中漫步,体会解开疑惑后,如雨过天晴般的愉悦。
本书可作为高等师范院校教育学院、教师进修学院数学专业及重量、省级中学数学骨培训班的教材或教学参考书,也可作为广大中学数学教师及数学爱好者拓展数学视野读物。
八年前, 数学之美 系列文章原刊载于谷歌黑板报,获得上百万次点击,得到读者高度评价。读者说,读了 数学之美 ,才发现大学时学的数学知识,比如马尔可夫链、矩阵计算,甚至余弦函数原来都如此亲切,并且栩栩如生,才发现自然语言和信息处理这么有趣。 在纸本书的创作中,作者几乎把所有文章都重写了一遍,为的是把高深的数学原理讲得更加通俗易懂,让非专业读者也能领略数学的魅力。读者通过具体的例子学到的是思考问题的方式 如何化繁为简,如何用数学去解决工程问题,如何跳出固有思维不断去思考创新。 本书第一版荣获国家图书馆第八届文津图书奖。第二版增加了针对大数据和机器学习的内容。第三版增加了三章新内容,分别介绍当今非常热门的三个主题:区块链的数学基础,量子通信的原理,以及人工智能的数学极限。
本书探讨了数学与文化的关系问题。作者从数学和文化的起源谈起,直至它们的演变和进化。用诸多的事例,说明数学对人类文化的影响,不仅显示在现代科学技术方面,理重要的是它表现了一种理性主义的探索精神。书中还多角度地论述了数学的事业是一桩的探索,它既探索宇宙,也探索人类自己最深的奥秘这样一种观点,最后的结论是:一个没有现代数学的文化是注定要衰落的,表达了作者对文化的独特理解和感受。
本书从数学、哲学、计算机科学、神经科学和人工智能等角度,全面阐述了贝叶斯理论背后的基础知识、思维方式和丰富哲理。贝叶斯定理一旦与算法相结合,就不再是一套枯燥的数学理论或认识论,而变成了应用广泛的知识宝库,催生了众多现代数学定理,以及令人称道的实践成果。作者一改传统的数学探讨模式,不仅展现了贝叶斯理论背后的科学思想,还阐述了它与人类思维之间的深刻关系,并对各相关领域和人工智能的发展进行了展望。本书适合喜爱数学、算法、机器学习、人工智能、逻辑学和哲学的大众读者,读者无须过多数学和算法知识就能读懂。
在这本与生活常识紧密相关的数学手账中,我们将学会正确看待数学学习中的恐惧与挫折感,体会数学思维带来的快乐。作者凭借丰富的教学经验和感悟,借助引人入胜的数学知识和300多幅手绘插画,用简单的语言讲述了对称、模糊逻辑、彭罗斯图案、无穷、孪生质数猜想、博弈论、费马大定理等有趣的数学话题,借此鼓励读者学会处理数学学习中的困难与变化,找到适合自己的思考方法。无论是学生还是数学爱好者,*能在阅读本书的过程中获得学习数学的勇气与自信,唤醒自己 心中的数学家 。
作为我国高等教育组成部分的自学考试,其职责就是在高等教育这个水平上倡导自学、鼓励自学、帮助自学、推动自学,为每一个自学者铺就成才之路。组织编写供读者学习的教材就是履行这个职责的重要环节。毫无疑问,这种教材应当适合自学,应当有利于学习者掌握和了解新知识、新信息,有利于学习者增强创新意识,培养实践能力,形成自学能力,也有利于学习者学以致用,解决实际工作中所遇到的问题。
本书从概率论的基础开始,通过例子与习题的旁征博引,引进了大量近代统计处理的新技术和一些同类教材中不能见而广为使用的分布。其内容包括工科概率论入门、经典统计和现代统计的基础,又加进了不少近代统计中数据处理的实用方法和思想,例如:Bootstrap再抽样法、刀切(Jackknife)估计、EM算法、Logistic回归、稳健(Robust)回归、Markov链、MonteCarlo方法等。它的统计内容与流行的教材相比,理论较深,模型较多,案例的涉及面要广,理论的应用面要丰富,统计思想的阐述与算法更为具体。本书可作为工科、管理类学科专业本科生、研究生的教材或参考书,也可供教师、工程技术人员自学之用。
本书中既注重知识的全面系统,又注重知识在考试中的应用,在内容全面的基础上突出重点,力求将重点、难点和考点讲清、讲透,帮助考生在薄弱环节下工夫。该书包括公共管理基础、综合知识两个部分,各部分均包括考试大纲、考试样题以及考试样题参考答案等方面内容,知识脉络分明,重点内容突出,可帮助考生巩固复习成果,熟悉考试,适应考试。
《量子力学(卷)》作者Claude Cohen-Tannoudji,因发展激光冷却与陷俘原子的方法与朱棣文和W. D.Phillips共同获得1997年诺贝尔物理学奖。《量子力学(卷)》根据Claude Cohen-Tannoudji和Bernard Diu、Franck Laloe三人合著的法文第二版译出。原书共两卷,卷内容有:量子力学的基本概念,量子力学的数学工具,量子力学的假定和简单应用,一维谐振子,角动量的普遍性质,中心势场中的粒子,氢原子。每章都有丰富的补充材料。《量子力学(卷)》叙述详细,物理概念清晰,便于自学。
《非线性本构关系在ABAQUS中的实现》主要针对不同类型的非线性本构关系及其有限元实现过程进行阐述,着重讨论时间相关和时间无关两类非线性本构关系、循环本构关系和热力耦合循环本构关系、大变形本构关系、晶体塑性循环本构关系和应变梯度塑性本构关系。通过对非线性本构关系的应用背景、本构方程、非线性方程迭代求解和一致性切线模量推导进行详细介绍,展示非线性本构关系在结构非线性分析中的具体应用,为研究固体材料非线性力学响应提供基本的理论体系和数值分析方法。
作为我国高等教育组成部分的自学考试,其职责就是在高等教育这个水平上倡导自学、鼓励自学、帮助自学、推动自学,为每一个自学者铺就成才之路。组织编写供读者学习的教材就是履行这个职责的重要环节。毫无疑问,这种教材应当适合自学,应当有利于学习者掌握和了解新知识、新信息,有利于学习者增强创新意识,培养实践能力,形成自学能力,也有利于学习者学以致用,解决实际工作中所遇到的问题。
《黏弹性流体动力学》围绕黏弹性流体高雷诺数湍流减阻、低雷诺数弹性不稳定性、弹性湍流、微尺度流动及数值模拟等方面内容,系统地总结了作者多年来在黏弹性流体动力学领域的基础研究工作,概述了黏弹性流体的流变学特性及其本构方程,分析了黏弹性流体高雷诺数湍流减阻特性及减阻机理,阐述了黏弹性流体弹性不稳定性及弹性湍流的诱发机理、黏弹性流体微尺度流动现象、黏弹性流体流动数值模拟方法及难点,并给出典型流动数值模拟算例。
德国科学家普朗特于1942年出版了其名著《流体力学概论》。随后,其学生奥斯瓦提奇等增补修订出版了该书的第六至第九版。德国流体力学教授欧特尔等又进一步增补、修订,出版了第十版和第十一版。本书为第十一版的中译本。欧特尔等保留了普朗特名著版的内容作为本书前六章的主要内容,第七至第十四章则介绍了当代流体力学发展的不同分支;并将书名由《流体力学概论》改为《普朗特流体力学基础》。 与一般流体力学论著强调数学理论不同,普朗特的名著(本书前四章)尽可能地避免复杂的数学分析,着重物理直观,旨在阐明流体力学的基本概念及问题的力学本质,培养读者的独立思考能力。欧特尔等撰写的后十章也体现了普朗特的风格和意图。后十章中有些内容可在普朗特的原著中以某种形式看到,但绝大部分是最近六十年来流体力学不同分支发展的
本书分6章论述了数学与教育的关系,数学的重要性,数学教育的重要性以及数学对于教育的特殊性,进而阐明了数学所具有的一系列文化教育功能——数学的自然科学教育功能,社会科学教育功能,人文科学教育功能与思维教育功能。 作者在书中提出了许多自己的新观点,并作了精辟的论述。
当您开始阅读《工程数学:线性代数》时,人类已经迈入了二十一世纪。这是一个变幻难测的世纪,这是一个催人奋进的时代。科学技术飞速发展,知识更替日新月异。希望、困惑、机遇、挑战,随时随地都有可能出现在每一个社会成员的生活之中。抓住机遇,寻求发展,迎接挑战,适应变化的制胜法宝就是学习——依靠自己学习、终生学习。
2012分级进阶版《石春祯英语阅读理解220篇》分为两册:“基础篇”Ii0篇和“提高篇”110篇,分册装订,独立销售,读者可根据需要自由选择。 本书(包括“基础篇”和“提高篇”,以下同)以2011版《石春祯英语阅读理解220篇》为基础修订而成。 本书的220篇文章均选自国外出版的英文原版书刊。选材以议论文和说明文为主,主要涉及科普、经济、社会生活、文化教育、人的生理和心理等方面。 每单元的前4篇为多项选择练习,每篇文章后附有5道阅读理解题。这些题目以深层次问题为主,主要涉及文章的主旨要义,作者的意图、观点或态度,文章的总体结构以及上下文之间的关系等。 每单元最后一篇为英译汉练习,要求把划线的5句话译成汉语,重点练习根据上下文准确理解英语原文并用汉语正确表达的能力。 本书后10个单元的每单元第5篇为新题型练习,其中包括:选