全书共二十章,前六章是属于基础知识,内容包括:整数分解、同余式、二次剩余、多项式之性质、素数分布概况、数论函数等;后十四章是就解析数论、代数数论、数论、数的几何这几个数论主要分支的基础部分加以介绍,内容包括:三角和、数的分拆、素数定理、连分数、不定方程、二元二次型、模变换、整数矩阵、p-adic数、代数数沦导引、数、Waring问题与Prouhet-Tarry问题、数的几何等,书里引述厂许多我国古代数学家在数论上的成就,也包含了许多近代数论中的重要成果,例如著者关于完整三角和及原根的结果、关于Prouhet-Tarry问题的结果、Basorpaaos关于二次非剩余的结果、Selberg关于素数定理的初等证明,RothSiegel定理、A.O.关于Hilbert第七问题的证明、Siegel关于二元二次型类数的定理 关于Waring问题的证明关于问题的结果、Selberg的筛法等等;书中也包括了著者许多
不定方程(又称丢番图方程)是数论中一个古老而又有趣的分支。迄今未获解决的费马大定理就是属于不定方程的。由于近年来对不定方程研究有很大进展,这一学科与代数几何、代数数论、组合数学、计算机科学的联系又很密切,因此不定方程仍然引起许多人的兴趣。 柯召、孙琦编著的《谈谈不定方程》概括地介绍了不定方程的主要内容。《谈谈不定方程》中谈到了历史上许多的问题和猜想,介绍了解决这些问题的方法(大部分是初等方法,少量是代数数论方法),概述了一些近代成果(例如有重大意义的Baker的有效方法)等。可供有志于了解不定方程的中学老师和广大数学爱好者阅读。
本书旨在帮助读者能够利用现有的结构优化软件进行结构优化设计。本书力求深入浅出,理论联系实际,学以致用,着力讲述结构优化设计的基本原理、方法和步骤。主要内容为:结构优化的数学模型及其求解方法,有限元方法简介,结构静、动力优化设计的灵敏度计算方法和公式,简单结构的优化设计简例,结构优化设计的技巧和策略,结构优化设计程序开发简介,工程结构优化设计实例以及ANSYS结构优化设计介绍。 本书读者对象为有关专业高年级本科生、工科研究生和从事结构设计的工程技术人员。
本书共有五部分,分别为绪论,编基本公式,第二编对数表、三角方程,第三编三角形的解法,第四编与复数相关的内容。 本书适合大、中学师生及三角学爱好者阅读参考。