本书探讨了数学与文化的关系问题。作者从数学和文化的起源谈起,直至它们的演变和进化。用诸多的事例,说明数学对人类文化的影响,不仅显示在现代科学技术方面,理重要的是它表现了一种理性主义的探索精神。书中还多角度地论述了数学的事业是一桩的探索,它既探索宇宙,也探索人类自己最深的奥秘这样一种观点,最后的结论是:一个没有现代数学的文化是注定要衰落的,表达了作者对文化的独特理解和感受。
本书从概率论的基础开始,通过例子与习题的旁征博引,引进了大量近代统计处理的新技术和一些同类教材中不能见而广为使用的分布。其内容包括工科概率论入门、经典统计和现代统计的基础,又加进了不少近代统计中数据处理的实用方法和思想,例如:Bootstrap再抽样法、刀切(Jackknife)估计、EM算法、Logistic回归、稳健(Robust)回归、Markov链、MonteCarlo方法等。它的统计内容与流行的教材相比,理论较深,模型较多,案例的涉及面要广,理论的应用面要丰富,统计思想的阐述与算法更为具体。本书可作为工科、管理类学科专业本科生、研究生的教材或参考书,也可供教师、工程技术人员自学之用。
本书分为两大部分。靠前部分针对“研究工作”,按照寻找论题、阐明研究问题、研究设计、数据收集、数据分析和结论共六个步骤的逻辑顺序,论述了各个步骤的工作要点,包括作者从论文指导工作实践中总结出的“三层次提出研究问题”的思路以及“论点树”的构建等。论述过程中,强调学位论文须遵循“问题导向”而非“论题导向”,宜采用创新点模式而非理论框架模式,宜重经验论证而非理论论证。第二部分针对“论文写作”,根据学位论文的构思和结构要求,对比了论文写作中常见的不同思路,阐明宜逆向写作而非顺向写作,宜“开门见山”式而非“外围兜圈”式叙述,宜“树状”式而非“枝蔓”式结构。讨论了专业学位论文标题、摘要、绪论、论证章、结论等各部分的写作要求。这部分还专门指出如何将各类管理研究报告作为基础材料,运用在MBA等学
Thoughitstitle"IntegralGeometry"mayappearsomewhatunusualinthiscontextitisneverthelessquiteappropriate,forIntegralGeometryisanoutgrowthofwhatintheoldendayswasreferredtoas"geometricprobabil-ities." Originating,aslegendhasit,withtheBuffonneedleproblem(whichafternearlytwocenturieshaslostlittleofitseleganceandappeal),geometricprobabilitieshaverunintodifficultiesculminatingintheparadoxesofBertrandwhichthreatenedthefledglingfieldwithbanishmentfromthehomeofMathematics.Inrescuingitfromthisfate,Poincar6madethesuggestionthatthearbitrarinessofdefinitionunderlyingtheparadoxescouldberemovedbytyingcloserthedefinitionofprobabilitywithageometricgroupofwhichitwouldhavetobeaninvariant.
本书分6章论述了数学与教育的关系,数学的重要性,数学教育的重要性以及数学对于教育的特殊性,进而阐明了数学所具有的一系列文化教育功能——数学的自然科学教育功能,社会科学教育功能,人文科学教育功能与思维教育功能。 作者在书中提出了许多自己的新观点,并作了精辟的论述。
本书为2011年MBA、MPA、MPAcc联考同步辅导教材数学辅导分册。数学在MBA、MPA、MPAcc联考中所占比重较大(75分),是通过联考的关键,同时近几年联考数学发生了重大调整,从知识点上砍去了高等数学部分,仅保留了高中基础数学知识内容。尽管知识点少了,变浅了,但是难度却有所加大,因此需要系统地培训练习,本书正是在这一背景下编写的。本书的特点在于紧密联系考试大纲,并且与大量例题相结合,尽量使考生能够举一反三,顺利应对联考数学部分考题。 本书适用于所有计划参加2011年MBA、MPA、MPAcc联考的考生,并可作为各类辅导班的辅导课程辅助教材。
本书是向中学教师和一般读者普及拓扑学知识的一本读物。它尽力避开严格抽象的理论,力求通过一些有趣的问题,运用通俗的语言,形象而直观地描述拓扑学中的一些基本的概念、事实和方法,包括多面体的欧拉公式,七桥问题和地图着色问题,约当曲线定理,曲面,基本群和同调群的直观描述,以及突变理论简介等。 本书可供中学教师,大学生以及对数学有兴趣并想知道拓扑学是什么的读者阅读,也可作为高师院校数学教育专业的选修课教材,教育学院也可用它对中学教师进行继续教育。