本视频课及配套图书为数学资优生编写,通过对学生的数学思维训练,激发学生对数学的兴趣,提高数学思维能力。本书搜集了近20年国内外小学数学竞赛试题,总结归纳出了一套完整的知识体系。本书的每节分三部分:兴趣篇、拓展篇、超越篇,各篇约有10题,所选问题经典,其中不少是作者的原创题。修订图书因内容经典,整体结构不变,调整少量章节,更换5%-10%题量。图书改进现有题目的解答,保持详解特色,突出解答自然性,并且每本书附有视频讲解。
奥数小蓝本出第三版了,按代数、几何、数论、组合四大板块,分专题由浅入深、层层递进。为数学资优生提供进一步学习的课题,架起中高考 自招 奥赛的桥梁。英文版在World Scientific出版,向世界展示数学奥林匹克中国方案。
本视频课及配套图书为数学资优生编写,通过对学生的数学思维训练,激发学生对数学的兴趣,提高数学思维能力。本书搜集了近20年国内外小学数学竞赛试题,总结归纳出了一套完整的知识体系。本书的每节分三部分:兴趣篇、拓展篇、超越篇,各篇约有10题,所选问题经典,其中不少是作者的原创题。修订图书因内容经典,整体结构不变,调整少量章节,更换5%-10%题量。图书改进现有题目的解答,保持详解特色,突出解答自然性,并且每本书附有视频讲解。
本视频课及配套图书为数学资优生编写,通过对学生的数学思维训练,激发学生对数学的兴趣,提高数学思维能力。本书搜集了近20年国内外小学数学竞赛试题,总结归纳出了一套完整的知识体系。本书的每节分三部分:兴趣篇、拓展篇、超越篇,各篇约有10题,所选问题经典,其中不少是作者的原创题。修订图书因内容经典,整体结构不变,调整少量章节,更换5%-10%题量。图书改进现有题目的解答,保持详解特色,突出解答自然性,并且每本书附有视频讲解。
奥数小蓝本出第三版了,按代数、几何、数论、组合四大板块,分专题由浅入深、层层递进。为数学资优生提供进一步学习的课题,架起中高考 自招 奥赛的桥梁。英文版在World Scientific出版,向世界展示数学奥林匹克中国方案。
本视频课及配套图书为数学资优生编写,通过对学生的数学思维训练,激发学生对数学的兴趣,提高数学思维能力。本书搜集了近20年国内外小学数学竞赛试题,总结归纳出了一套完整的知识体系。本书的每节分三部分:兴趣篇、拓展篇、超越篇,各篇约有10题,所选问题经典,其中不少是作者的原创题。修订图书因内容经典,整体结构不变,调整少量章节,更换5%-10%题量。图书改进现有题目的解答,保持详解特色,突出解答自然性,并且每本书附有视频讲解。
本套书共6卷,给出了美国高中数学竞赛的相关试题及解答,可为备战AMC10做准备,内容涵盖了几乎所有的AMC10的常考知识和解题技巧,每卷都给出了相关实例、大量练习题和所有练习题的详细解答,第6卷还给出了相关的模拟试题和详细解答。 《美国高中数学竞赛-AMC10准备(英文版 套装全6卷)》可供准备参加数学竞赛的学生或数学爱好者参考阅读。
在中学数学中,因式分解十分重要。一方面,它承上启下,学习它,既可以复习整式的四则运算,又为下一步学习分式打好基础,对等式的恒等变形、方程的求解等等也是不可缺少的;另一方面,因式分解的问题变化万千,方法灵活多样,有助于培养学生的观察能力、运算能力和创造能力。因此,它是初中数学竞赛的重要内容。本书是供读者学习因式分解时参考的,前面8个单元内容不超过初中水平,可供广大同学阅读;后面5个单元稍有提高,可供有兴趣的读者继续钻研。
《奥数教程 高中第1-3分册(第八版)套装(教程+能力测试+学习手册)(全9册)》由熊斌,冯志刚编著
本书由三个板块构成,第一个板块是认识一元一次方程、一元二次方程,即认识求解一元一次方程、一元二次方程、方程实数根的判别、方程的根与系数的关系;第二个板块是对可化为一元一次方程、一元二次方程的方程的认识,即认识求解二(多)元一次方程组、高次方程、分式方程、无理方程和二元二次方程组;第三个板块是一元一次方程、一元二次方程的若干应用,主要讨论一元二次方程的整数根问题以及关于一元一次方程、二(多)元一次方程组、一元二次方程的实际应用。每讲内容的编排力求做到由低到高、暴露思维、注重方法;力求做到既便于读者自学,又便于教师用作课外讲座;同时还努力尝试渗透数学作为提升人的智慧的 培养基 、作为文化所包含的教育价值。 每讲例习题或是著名的历史趣题,或是历年来的优秀竞赛题。
《小学奥数解题方法大全》分上、下两篇,上篇共20章,以专题为基点细说解题方法;下篇共9章,以方法为主线拓宽思维空间。本书上篇分专题对各类问题进行归类整理,详细介绍题型特征,深入分析解题方法。使学生在学习过程中系统了解小学数学各类问题,进一步感悟解题思路,提升解题能力。下篇则讲授简单适用的解题技巧,例如整体分析、以简驭繁、以实代虚、倒着推算、推向特别、枚举筛选等。帮助小学生理解、掌握解题方法与技巧是本书追求的目标。本书遵循数学思维的特点及规律,按照数学建模、问题转化、数形结合、等量变换、构造方程等思想方法,对例题作深入探究,一题多解并提供详细解答,增强学生学习效果。每章在讲解之后都配有比较充足的练习,例题讲解与练习题无缝衔接,为小学生巩固提高提供了丰富的素材。书中还编写了一些“数
《走向IMO:数学奥林匹克试题集锦》从2003年问世以来已走过了20个年头,我们将此书中的各大赛试题进行分拆然后重新组合,形成了一个新的系列《走向IMO 数学奥林匹克丛书》。
本书前版《自主招生数学考典》于2013年10月出版,已印刷7次,因自主招生考试不断发展,各校招考情况也在发生变化,考题在不断出新,知识点也在变化创新,因此决定出版修订版。修订版改为现书名,在原版基础上,根据*近三年的考题变化情况,对知识框架做一些补充,体例做出部分更改,同时删除一些陈旧的例题,增加*近三年的考题。 本书依据市场需求和教学积累进行编写,严格遵循自主招生的学科特点,在试题中寻找普遍规律。既可作为培训教材,又适合学生自学。全书分26章,内容覆盖高中数学各个知识点,便于自学,取材广泛,难度跨越比较大,注重将知识考查和能力培养融为一体。
本书是数学竞赛的入门书,是在现行教材基础上对一次函数和二次函数内容的提高和拓展,以帮助学生从更高的角度认识其内容,而且在数学思想方法的渗透和思维能力与技巧的培养方面有一定的超前性。同时本书起点低,终点高,通俗易懂,每一部分内容都从*基本的知识点入手,逐步深入,基本覆盖了近几年竞赛中有关一次函数和二次函数的知识点和题目。另外本书对每一种题型,都进行了适当的归纳和总结,以便于学生的阅读和掌握,本书主要适用于初中阶段学生,但也可以作为高中生的辅导用书。
本书主要介绍了全国高中数学联赛1981年至2019年的试题及解答,该书广泛收集了每道试题的多种解法,且注重数学知识与实际相结合,思路清晰,解法明确. 本书适合中学师生及数学爱好者阅读参考.
三角形和四边形是平面几何中简单的多边形,是平面几何中*基本的图形。本书全面、系统地介绍了一般三角形、四边形与特殊三角形、四边形以及三角形、四边形之间的基本性质,列举了大量的竞赛题说明这些性质的应用,并且介绍了非三角形、四边形问题如何转化为三角形、四边形问题加以解决,其中不少内容是作者多年从事数学竞赛教学和研究的体会与总结。同时,本书也是在高中阶段继续参与数学竞赛活动的基本读本。每一单元配有一定量的练习题,供读者进行实战训练。本书对提高数学竞赛的水平有很大帮助。
本视频课及配套图书为数学资优生编写,通过对学生的数学思维训练,激发学生对数学的兴趣,提高数学思维能力。本书搜集了近20年国内外小学数学竞赛试题,总结归纳出了一套完整的知识体系。本书的每节分三部分:兴趣篇、拓展篇、超越篇,各篇约有10题,所选问题经典,其中不少是作者的原创题。修订图书因内容经典,整体结构不变,调整少量章节,更换5%-10%题量。图书改进现有题目的解答,保持详解特色,突出解答自然性,并且每本书附有视频讲解。
数学竞赛问题对喜欢数学的聪明学生有很大的吸引力,它不同于课本上的基础题。解决它们往往需要有一些 创新 ,了解一些常见的解题方法与策略能够使这种 创新 越来越不平凡。本书在知识分块的前提下分述了初中数学竞赛解题的一些方法与策略,只是说明该方法在这块知识中应用更多,或者源于这块知识。方法与知识可以说是数学学习中的纵轴与横轴,两者相互交融,书中的一些方法在各知识块中都会用到,有些只是名称不同而已。重要的是通过对方法与策略的学习悟出其中的思想,在平时的练习中去 模仿 、 变化 、 创新 ,得到灵感。
《初中数学竞赛中的思维方法(第2版)/奥林匹克数学普及讲座丛书》 《初中数学竞赛中的思维方法(第2版)/奥林匹克数学普及讲座丛书》 《初中数学竞赛中的思维方法(第2版)/奥林匹克数学普及讲座丛书》 本书是对初中数学知识的自然延拓与扩充,内容包括原则与思想、方法与逻辑、问题与模型三大部分。通过对初中数学竞赛的综合问题的分类讲解与练习,夯实基础知识、发展逻辑思维能力,领悟数学思想,培养创新意识。内容由浅入深,按知识系统,根据大纲逐年级上升,适于自学和配合教学同步进行,各章配有精选的练习题和解答。既可作为学生学习奥林匹克数学的教材,又可作为培训教练员的参考书。 《初中数学竞赛中的代数问题 第2版》 本书内容是对初中代数知识的自然延拓与扩充,包括代数式基础、乘法公式与因式分解、方程式理论初步、函数与极值等,
三角形和四边形是平面几何中简单的多边形,是平面几何中*基本的图形。本书全面、系统地介绍了一般三角形、四边形与特殊三角形、四边形以及三角形、四边形之间的基本性质,列举了大量的竞赛题说明这些性质的应用,并且介绍了非三角形、四边形问题如何转化为三角形、四边形问题加以解决,其中不少内容是作者多年从事数学竞赛教学和研究的体会与总结。同时,本书也是在高中阶段继续参与数学竞赛活动的基本读本。每一单元配有一定量的练习题,供读者进行实战训练。本书对提高数学竞赛的水平有很大帮助。
在中学数学中,因式分解十分重要。一方面,它承上启下,学习它,既可以复习整式的四则运算,又为下一步学习分式打好基础,对等式的恒等变形、方程的求解等等也是不可缺少的;另一方面,因式分解的问题变化万千,方法灵活多样,有助于培养学生的观察能力、运算能力和创造能力。因此,它是初中数学竞赛的重要内容。本书是供读者学习因式分解时参考的,前面8个单元内容不超过初中水平,可供广大同学阅读;后面5个单元稍有提高,可供有兴趣的读者继续钻研。