本书全面、深入地探讨了人工智能(AI)领域的理论和实践,以统一的风格将当今流行的人工智能思想和术语融合到引起广泛关注的应用中,真正做到理论和实践相结合。全书分7个部分,共28章,理论部分介绍了人工智能研究的主要理论和方法并追溯了两千多年前的相关思想,内容主要包括逻辑、概率和连续数学,感知、推理、学习和行动,公平、信任、社会公益和安全;实践部分完美地践行了 现代 理念,实际应用选择当下热度较高的微电子设备、机器人行星探测器、拥有几十亿用户的在线服务、AlphaZero、人形机器人、自动驾驶、人工智能辅助医疗等。本书适合作为高等院校人工智能相关专业本科生和研究生的教材,也可以作为相关领域专业人员的参考书。
《Python编程 从入门到实践 第3版》 本书是享誉全球的Python入门书,影响了超过250万读者。全书分两部分:第一部分介绍用Python编程所必须了解的基本概念,包括强大的Python库和工具,以及列表、字典、if语句、类、文件和异常、代码测试等内容;第二部分将理论付诸实践,讲解如何开发三个项目,包括简单的2D游戏、利用数据生成交互式的信息图以及创建和定制简单的Web应用,并帮助读者解决常见编程问题和困惑。第3版进行了全面修订:使用了文本编辑器VS Code,新增了介绍removeprefix()方法和removesuffix()方法的内容,并且在项目中利用了Matplotlib和Plotly的最新特性,等等。 《Python编程快速上手 让繁琐工作自动化 第2版》 本书是一本面向初学者的Python编程实用指南。本书不仅介绍了Python语言的基础知识,而且通过案例实践教读者如何使用这些知识和技能。本书的第一部
Gilbert Strang是麻省理工学院数学教授,美国国家科学院院士和美国艺术与科学院院士,在有限元理论、变分法、小波分析及线性代数等领域卓有成就,著有多部经典数学教材,开设多门开放式课程,享有国际盛誉。本书是深度学习的导论,全面介绍机器学习的数学基础,阐述架构神经网络的核心思想,主要内容包括线性代数的重点、大规模矩阵的计算、低秩与压缩传感、特殊矩阵、概率与统计、**化、数据学习等。本书可作为数据科学方向的数学基础课程教材,也可供人工智能、深度学习领域的科研人员和工程技术人员参考。
本书全面且深入地呈现了深度学习领域的知识体系,系统梳理了该领域的核心知识,阐述了深度学习的关键概念、基础理论及核心思想,剖析了当代深度学习架构与技术。全书共 20 章。本书首先介绍深度学习的发展历程、基本概念及其在诸多领域(如医疗诊断、图像合成等)产生的深远影响;继而深入探讨支撑深度学习的数学原理,包括概率、标准分布等;在网络模型方面,从单层网络逐步深入到多层网络、深度神经网络,详细讲解其结构、功能、优化方法及其在分类、回归等任务中的应用,同时涵盖卷积网络、Transformer 等前沿架构及其在计算机视觉、自然语言处理等领域的独特作用。本书还对正则化、采样、潜变量、生成对抗网络、自编码器、扩散模型等关键技术展开深入分析,阐释其原理、算法流程及实际应用场景。对于机器学习领域的新手,本书是全面且
《机器学习 : 全彩图解 微课 Python编程》是 鸢尾花数学大系:从加减乘除到机器学习 丛书的最后一册,前六本解决了编程、可视化、数学、 数据方面的诸多问题,而《机器学习 : 全彩图解 微课 Python编程》将开启机器学习经典算法的学习之旅。 《机器学习 : 全彩图解 微课 Python编程》设置了 24 个话题,对应四大类机器学习经典算法(回归、分类、降维、聚类),覆盖算法包括: 回归分析、多元线性回归、非线性回归、正则化回归、贝叶斯回归、高斯过程、k 最近邻分类、朴素贝叶 斯分类、高斯判别分析、支持向量机、核技巧、决策树、主成分分析、截断奇异值分解、主成分分析进阶、 主成分分析与回归、核主成分分析、典型相关分析、 k 均值聚类、高斯混合模型、最大期望算法、层次聚类、 密度聚类、谱聚类。 《机器学习 : 全彩图解 微课 Python编程》选取算
不需要是技术专家,只要阅读《游戏设计艺术》,学习佳作,深刻领悟游戏设计的真谛,人人都可以成为优秀的游戏设计师! 本书深入讲解最基础的游戏设计原则,展示桌面、卡牌、体育游戏中的技巧如何在电子游戏中生效。书中列出了100多个透镜,帮助你从各种角度观察游戏设计,例如心理、建筑、音乐、视觉、电影、软件工程、主题公园设计、数学、谜题设计和人类学等方方面面。本书主要内容包括游戏的体验、构成游戏的元素、元素支撑的主题、游戏的改进、游戏机制、游戏中的角色、游戏设计团队、如何开发好的游戏、如何推销游戏、设计者的责任等。 本书包含许多VR和AR平台的上佳范例,如《神秘海域4》和《最后生还者》,以及免费游戏、混合游戏、严肃游戏等方面的当代名作。
9787115613639 Python编程 从入门到实践 第3版 109.80 9787115551870 Python编程快速上手 让繁琐工作自动化 第2版 89.00 9787115642363 Python极客项目编程(第2版) 69.80 9787115562883 Python编程实战 妙趣横生的项目之旅 99.90 《Python编程 从入门到实践 第3版》 本书是享誉全球的Python入门书,影响了超过250万读者。全书分两部分:第一部分介绍用Python编程所必须了解的基本概念,包括强大的Python库和工具,以及列表、字典、if语句、类、文件和异常、代码测试等内容;第二部分将理论付诸实践,讲解如何开发三个项目,包括简单的2D游戏、利用数据生成交互式的信息图以及创建和定制简单的Web应用,并帮助读者解决常见编程问题和困惑。第3版进行了全面修订:使用了文本编辑器VS Code,新增了介绍removeprefix()方法和removesuffix()方法的内容,并且在项目中利用了Matplotlib和Plotly的最新特性,等等。
本书主要包括OSPF高级特性、IS-IS高级特性、BGP高级特性、网络安全技术、mpls技术、mpls vpn的单域和跨域技术、EVPN技术、IPV6路由、IPV6过渡技术、QOS技术、vxlan、准入控制技术、广域网vpn、Segment Routing、SRv6等内容,覆盖数据通信领域路由交换高阶技术、企业网络架构全景、园区网络典型架构与技术、华为CloudCampus解决方案设计与部署、广域互联网络典型架构与技术、华为SD-WAN解决方案设计与部署、广域承载网络典型架构与技术、华为CloudWAN解决方案设计与部署、网络自动化技术与实践等知识技能。 本书既可以作为华为 ICT 学院的配套实验教材,用来增强学生的实际动手能力,也可以作为计算机网络相关专业的实验指导书,还可以作为相关企业的培训教材,同时对于从事网络管理和运维的技术人员来说,也是一本很实用的技术参考书。
《华为数据之道》 这是一部从技术、流程、管理等多个维度系统讲解华为数据治理和数字化转型的著作。华为是一家超大型企业,华为的数据底座和数据治理方法支撑着华为在全球170多个国家/地区开展多业态、差异化的运营。书中凝聚了大量数据治理和数字化转型方面的有价值的经验、方法论、规范、模型、解决方案和案例,不仅能让读者即学即用,还能让读者了解华为数字化建设的历程。 ============= 《华为数字化转型之道》 本书由华为公司质量与流程IT团队官方出品,从认知、理念、转型框架、规划和落地方法、业务重构、平台构建等多个维度全面总结和阐述了华为自身的数字化转型历程、方法和实践,能为准备开展或正在开展数字化转型的企业提供系统、全面的参考。
本书从R语言临床预测模型基本原理讲起,逐步深入到进阶实战,并配合实战案例,重点介绍临床预测模型的构建、评价、验证,让读者可以快速领悟 3~5分预测模型 SCI(science citation index,科学引文索引)的套路与精髓,为后续冲击10分以上SCI打基础。 本书分为13章,主要内容有线性回归、Logistic回归、Cox回归、竞争风险模型等;自变量筛选方法有传统方法、逐步回归法、Lasso法、随机森林法、子集法、主成分分析法等;模型可视化涉及多种形式的列线图、Calibration校准曲线、ROC、DCA 曲线等图形绘制,不仅涉及单模型的可视化,还涉及单模型多时点、多模型同时点的可视化;模型评价指标涉及C指数、AUC、NRI、IDI 等;模型验证主要涉及简单交叉验证、K折交叉验证、留一法交叉验证及Bootstrap法。 本书内容通俗易懂,案例丰富,实用性强,适合R语言临床预测模型的入门读
《Blender 3D保姆级基础入门教程》共7章,包含16个案例。首先通过循序渐进的3个零基础案例由浅入深地讲解Blender的基础知识和操作,让读者快速上手Blender;然后通过6个基础的静态案例讲解Blender的大部分基础功能;再通过4个不同类型的小动画讲解Blender的动态制作技术;最后介绍Blender的特色功能和新功能,并通过3个案例来讲解功能的具体应用。书中每个案例还配有教学视频,并且针对关键的步骤提供了Blender源文件,供读者参考。 《Blender 3D保姆级基础入门教程》案例丰富,步骤讲解详细,非常适合零基础的读者阅读。有一定基础的读者也可以通过阅读本书查漏补缺,进一步提高Blender操作水平。
《编程不难:全彩图解 微课 Python编程》是 鸢尾花数学大系 从加减乘除到机器学习 丛书的第一册,也是 编程 板块的第一册, 着重介绍如何零基础入门学 Python 编程。虽然《编程不难:全彩图解 微课 Python编程》主要讲解 Python 编程,但是也离不开数学。《编程不难:全彩图解 微课 Python编程》尽量 避免讲解数学概念公式,而且用图形和近乎口语化的语言描述程序设计、数据分析、机器学习背后常用的 数学思想。 《编程不难:全彩图解 微课 Python编程》分为预备、语法、绘图、数组、数据、数学、机器学习、应用八大板块, 共 36 章, 内容 跨度 极大! 从 Python 基本编程语法,到基本可视化工具,再到各种数据操作工具,还介绍常用 Python 实现的各种复 杂数学运算,进入数据分析和机器学习之后,还讲解如何搭建应用 App。我们可以把《编程不难:全彩图解 微课 Python编程
《深度学习》内容介绍:《深度学习》由全球知名的三位专家Ian Goodfellow、Yoshua Bengio 和Aaron Courville撰写,是深度学习领域奠基性的经典教材。全书的内容包括3个部分:第 1部分介绍基本的数学工具和机器学习的概念,它们是深度学习的预备知识;第 2部分系统深入地讲解现今已成熟的深度学习方法和技术;第3部分讨论某些具有前瞻性的方向和想法,它们被公认为是深度学习未来的研究重点。 《深度学习》适合各类读者阅读,包括相关专业的大学生或研究生,以及不具有机器学习或统计背景、但是想要快速补充深度学习知识,以便在实际产品或平台中应用的软件工程师。 《动手学深度学习》内容简介:本书旨在向读者交付有关深度学习的交互式学习体验。书中不仅阐述深度学习的算法原理,还演示它们的实现和运行。与传统图书不同,本书的每一节都是一个可以
数据科学和机器学习已经深度融合到我们生活的方方面面,而数学正是开启未来大门的钥匙。不是所 有人生来都握有一副好牌,但是掌握 数学 编程 机器学习 是**。这一次,学习数学不再是为了考试、分数、升学,而是投资时间、自我实现、面向未来。为了让大家学数学、用数学,甚至爱上数学, 在创作这套书时,作者尽量克服传统数学教材的各种弊端,让大家学习时有兴趣、看得懂、有思考、更自信、用得着。 鸢尾花书有三大板块 编程、数学、实践。数据科学、机器学习的各种算法离不开数学,本册《矩阵力量》是 数学 板块的第 2 本,主要介绍常用线性代数工具。任何数学工具想要从一元推广到多元,比如多元微积分、多元统计,都绕不开线性代数。 《矩阵力量:线性代数全彩图解 微课 Python编程》共 25 章内容,可以归纳为 7 大板块:向量、矩阵、
《代码大全2(纪念版)》作为名家经典著作,是一本完整的软件构建手册,涵盖软件构建过程中的所有细节。它从软件质量和编程思想等方面论述软件构建的各个主题,并详细论述主流的新技术、高屋建瓴的观点和通用的概念,还含有丰富而典型的程序示例。本书所论述的技术不仅填补了初级与中高级编程技术之间的空白,同时还为程序员提供了一个有关编程技巧的信息来源。 《代码大全2(纪念版)》对经验丰富的程序员、技术带头人、自学的程序员及几乎不懂太多编程技巧的学生大有帮助。无论是什么背景的读者,都可以通过阅读和领会本书,在更短的时间内更轻松地写出更好、更简洁和更优雅的程序。
本书是《工程控制论》(第三版)的下册。这一册共九章。第十三章讨论摄动理论在控制系统设计中的应用,其中特别说明在飞行控制系统中的应用。第十四、十五两章介绍控制系统在随机干扰下的分析和设计。第十六、十八章讨论了适应性控制系统的设计。第十九章介绍了提高控制系统可靠性的各种方法。第十七、二十、二十一这三章分别是:逻辑控制和有限自动机(第十七章),信号与信息(第二十章),大系统(第二十一章)。这些方面已构成工程控制论这门学科的重要研究方向。书末还附有“有关中文著作目录选辑”,可供读者查阅。
《数据有道 : 数据分析 图论与网络 微课 Python编程》是 鸢尾花数学大系 从加减乘除到机器学习 丛书的第三板块 ( 实践板块 ) 中的一本关于数据 科学的分册。 实践 这个板块,我们将会把学到的编程、可视化, 特别是数学工具应用到具体的数据科学、 机器学习算法中,并在实践中加深对这些工具的理解。 《数据有道 : 数据分析 图论与网络 微课 Python编程》可以归纳为 7 大板块 数据说、数据处理、时间数据、图论基础、图的分析、图与矩阵、图论实践。 这 7 个板块 ( 共 25 章内容 ) 都紧紧围绕一个主题 数据! 《数据有道 : 数据分析 图论与网络 微课 Python编程》以数据为名,以好奇心和疑问为驱动,主动使用 编程 可视化 数学 工具进行探索。《数据有道 : 数据分析 图论与网络 微课 Python编程》将 会回顾鸢尾花书前五本主要的工具,让大家对很多概念从似懂非懂变
数据科学和机器学习已经深度融合到我们生活的方方面面,而数学正是开启未来大门的钥匙。不是所 有人生来都握有一副好牌,但是掌握 数学 编程 机器学习 是王牌。这次,学习数学不再是为了考试、分数、升学,而是投资时间、自我实现、面向未来。为了让大家学数学、用数学,甚至爱上数学, 在创作这套书时,作者尽量克服传统数学教材的各种弊端,让大家学习时有兴趣、看得懂、有思考、更自信、用得着。 《数学要素:全彩图解 微课 Python编程》打破数学板块的藩篱,将算数、代数、线性代数、几何、解析几何、概率统计、微积分、优化方法等板块有机结合在一起。从加、减、乘、除四则运算讲起,主要内容包括:第 1、2 章讲解向量和矩阵的基本运算;第 3 章讲解常用几何知识;第 4 章讲解代数知识;第 5、6 两章介绍坐标系;第 7、8、9 三章介绍解析几
《计算机视觉:算法与应用》探索了用于分析和解释图像的各种常用技术,描述了具有一定挑战性的视觉应用方面的成功实例,兼顾专业的医学成像和图像编辑与交织之类有趣的大众应用,以便学生能够将其应用于自己的照片和视频,从中获得成就感和乐趣。《计算机视觉:算法与应用》从科学的角度介绍基本的视觉问题,将成像过程的物理模型公式化,然后在此基础上生成对场景的逼真描述。作者还运用统计模型来分析和运用严格的工程方法来解决这些问题。 《计算机视觉:算法与应用》作为本科生和研究生 计算机视觉 课程的理想教材,适合计算机和电子工程专业学生使用,重点介绍现实中行之有效的基本技术,通过大量应用和练习来鼓励学生大胆创新。此外,《计算机视觉:算法与应用》的精心设计和编排,使其可以作为计算机视觉领域中一本独
《神经网络与深度学习:案例与实践》是《神经网络与深度学习》(蒲公英书)的配套实践书,由复旦大学邱锡鹏教授和百度飞桨团队合作完成。本书在章节设计上和《神经网络与深度学习》一一对应,并以模型解读+案例实践的形式进行介绍。模型解读主要聚焦如何从零开始一步步实现深度学习中的各种模型和算法,并结合简单的任务来加深读者对模型和算法的理解;案例实践主要强调如何使用飞桨预定义API来更好地完成实际任务,会涉及一些数据预处理问题。建议读者将本书和《神经网络与深度学习》结合阅读,在动手实践中更深入地理解深度学习的模型和原理。
《可视之美:数据可视化 数学艺术 学术绘图 Python创意编程》是 鸢尾花数学大系:从加减乘除到机器学习 丛书中编程板块的第二册。编程板块第一册《编程不难》着重介绍如何零基础入门Python编程,《可视之美:数据可视化 数学艺术 学术绘图 Python创意编程》则在《编程不难》基础之上深入探讨如何用Python完成数学任务及板块数据可视化。 《可视之美:数据可视化 数学艺术 学术绘图 Python创意编程》是本系列中的一本真正意义上的 图册 。内容覆盖科技制图、计算机图形学、创意编程、趣味数学实验、数学科学、机器学习等。《可视之美:数据可视化 数学艺术 学术绘图 Python创意编程》 毫无节制 地展示数学之美,而且提供特别实用且容易复制的创作思路、做图技巧、编程代码。 《可视之美:数据可视化 数学艺术 学术绘图 Python创意编程》包含8个板块共36章内容。前5个
主要内容 ● 演示如何用C 思考,以更大限度地发挥语言的深远能力,并开发有效的解决方案 ● 解释难以理解的原理,进行陷阱警告,分享提高效率和性能的提示、技巧和变通方法 ● 呈现各种具有挑战性的、真实世界的程序,其用途广泛,足以融入任何项目 ● 重点介绍C 20的新特性,包括模块、概念、三向比较、立即执行函数等 ● 深入讨论新的C 20标准库功能,例如文本格式化、范围、原子智能指针、同步原语、日期、时区等