阅读本书可以学习使用Python对数据集进行操作、处理、清洗和规整。第3版针对Python3.10和pandas1.4进行了更新,并通过实操讲解和实际案例向读者展示了如何高效地解决一系列数据分析问题。读者将在阅读过程中学习新版本的pandas、NumPy、IPython和Jupyter。 本书作者Wes McKinney是Python pandas项目的创始人。本书对Python数据科学工具的介绍既贴近实战又内容新颗,非常适合刚开始学习Python的数据分析师或刚开始学习数据科学和科学计算的Python程序员阅读。读者可以从GitHub获取数据文件和相关资料。 学完本书,你将能够: ·使用Jupyter notebook和IPython shell进行探索性计算。 ·掌握NumPy的基础功能和高级功能。 ·掌握pandas库中的数据分析工具。 ·使用灵活的工具对数据进行加载、清洗、转换、合并和重塑。 ·使用matplotlib进行信息可视化。 ·使用pandas的groupBy功能对数据集进行切片、切
本书根据PL/SQL的新版本进行了全面更新,涵盖从基础语法、程序控制到最新的优化和调优增强等方面的知识,通过真实的实验、大量的示例讲解了PL/SQL技能,是一本逐步分解的、详尽的PL/SQL编程教程。读者可以按照本书的步骤一步一步地完成每一个关键任务,掌握Oracle 21c PL/SQL编程技术,深度探索PL/SQL编程技术及最佳实践。本书既适合新手数据库开发人员和DBA阅读,也适合有一定经验的从业人员阅读。
这是一本讲解在数据要素大背景下,企业如何将数据资源开发成数据产品,进而通过数据产品实现数据资产化和资本化的著作,为企业释放数据价值提供了科学的方法论和国内领先的实践方案。这本书由全球数据资产理事会(DAC)组织编写,融合了国内数据资产管理领域多家企业的10位专家的研究成果和实战经验,得到了湖南数据产业集团、广州数据集团、深圳数据交易所、浙江大数据交易中心、华为、平安、安永、毕马威、德勤、普华永道、浙江大学等企业、机构和高校等近20位高层领导、技术专家和学者的高度评价和一致推荐。从概念到方法,从理论到实践,从产业政策到行业解决方案,本书将为读者构建全面的数据产品知识体系,核心内容如下:(1)国家和地方出台的数据资产相关政策及其解读,为数据资产实践提供法律准绳;(2)详细阐释数据从原始数据
本书在前四版畅销书的基础上,根据SPSS 26.0软件升级的市场应用需求进行第5次升级修订。 本书结合具体的SPSS统计分析实例,图文并茂地介绍了近期新版本SPSS 26.0的各种统计分析方法,包括基本统计分析、参数与非参数检验、方美分析、相关分析、同归分析、名重响应分析、聚类分析、判别分析、因子分析、主成分分析、对应分析、时间序列模型、信度分析、生存分析和缺失值分析的原理和使用方法。全书注重内容的实用性,在译细介绍SPSS常用的提作功能基础上,通过一些综合应用案例(在医学、经济管理、自然科学和社会科学中的应用)来演示实际统计分析中SPSS的使用。 本书适用于SPSS软件17.0~26.0版本,作者录制了96个视频教学文件,读者可通过扫描各章节二维码阅读学习。本书可作为高校经济学、管理学、统计学、公共管理、社会学和卫生统计等专业学生学
本书详细介绍面向静态数据集、增量数据集和数据流的高效用模式挖掘的理论和方法。本书内容共6章,第1章和第2章介绍高效用模式挖掘的相关知识。第3章介绍面向静态数据集的包含正、负效用的两类精简高效用模式挖掘方法的研究与实现过程。第4章介绍针对增量数据集的挖掘高效用模式全集和精简集合的研究。第5章介绍面向数据流的精简高效用模式挖掘方法的研究与实现过程。第6章给出三个高效用模式挖掘的应用案例。第3~5章有方法的实验证明,供读者更好地了解本书内容。 本书可供大数据挖掘相关专业研究生参阅,也可以作为大数据挖掘研究和应用开发人员的参考书。
本书详细剖析LevelDB从使用到设计实现的方方面面,读后可了解谷歌Bigtable数据库的设计精髓,逻辑上可分为两部分。 第一部分着重讲解LevelDB的基础知识,主要内容如下。 1)基本数据结构,这是理解后续内容的基础,也可以加深对比较器、迭代器等常见数据结构的理解。 2)基本使用,如数据库打开、关闭以及基本的读写操作。 3)总体架构与设计思想,读后可掌握LevelDB的整体情况与设计思路。 4)公用基础类,读后可了解LevelDB中如何实现数值编码、内存管理以及文件读取等。 第二部分着重讲解LevelDB各模块的实现细节,主要内容如下。 1)Log模块的实现细节,以及如何通过Log进行崩溃恢复,并生成一个MemTable文件。 2)MemTable模块的实现细节,以及MemTable超过内存阈值时如何生成一个SSTable文件。 3)SSTable模块的实现细节。 4)Compaction原理与多版本管理。
《企业级数据架构:核心要素、架构模型、数据管理与平台搭建》由李杨著
当前,数据驱动的理念已渗透到各个领域,数据科学和人工智能技术在制造业、金融、教育等多个行业中得到了广泛应用。Python作为一种编程语言,已成为数据科学和人工智能领域的事实标准,它丰富的生态系统进一步增强了它在这些领域中的重要性。然而,随着数据量的不断增长,如何利用Python加速数据科学处理,并将它扩展到集群上的并行计算,已成为数据科学家面临的重要挑战。本书详细介绍了4种数据科学工具:Dask、Ray、Xorbits和mpi4py,这些工具可以帮助数据工程师和科学家处理更大规模的数据集、训练更复杂的模型,并更高效地进行机器学习模型的迭代和部署。本书面向具备一定数据科学基础的数据工程师、数据科学家或领域专家,同时也适合大学生和研究生作为进入高性能数据科学领域的入门读物。
本书分为以下几个主要部分:第1-3章介绍方法和技术。在这些章节中,我们描述了一种性能调优方法。还提供了一些关于MongoDB架构和MongoDB提供的用于调查、监控和诊断MongoDB性能的工具的背景知识。第4章和第5章介绍应用程序和数据库设计。第6-10章介绍应用程序代码的优化。第11-14章讨论MongoDB服务器及其运行硬件的优化。
本书是热销书《SQL基础教程》的作者MICK为志在向中级进阶的数据库工程师编写的一本SQL技能提升指南。全书可分为两大部分。第一部分介绍了SQL语言不同寻常的使用技巧,带领读者重新认识CASE表达式、窗口函数、自连接、EXISTS谓词、HAVING子句、外连接、行间比较、集合运算、数列处理等SQL常用技术,发掘它们的新用法。这部分不仅穿插讲解了这些技巧背后的逻辑和相关知识,而且辅以丰富的示例程序,旨在帮助读者从面向过程的思维方式转换为面向集合的思维方式。第二部分介绍了关系数据库的发展史,并从集合论和逻辑学的角度讲述了SQL和关系模型的理论基础,旨在帮助读者加深对SQL语言和关系数据库的理解。此外,本书很多节的末尾设置有练习题,并在书末提供了解答,方便读者检验自己对书中知识点的掌握程度。本书适合具有半年以上SQL使用经验、已掌握S
在大数据时代,我们并不缺少数据,缺少的是利用数据分析的思维和工具去解决实际问题的能力。数据化分析是运用恰当的方法和工具,对数据进行科学、有效的分析,从而提出有理有据、具有可操作性的建议,以解决现实中的难题。本书主要介绍了数据分析的9 种思维、7 种工具、学习方法、基本方法、展现方法、制作数据分析报告的方法,以及数据分析的思维模型。本书适合所有对数据分析感兴趣的读者阅读,特别是在工作或生活中需要经常跟数据接触的人,如数据分析师、产品经理、运营人员、管理人员、财务人员等。
本书深入探讨了大数据技术的核心概念和实际应用。从大数据的基础架构Hadoop开始,逐步解析了分布式协调服务Zookeeper、数据仓库Hive、面向列的数据库HBase等关键技术。此外,还介绍了数据迁移工具Sqoop、数据采集工具Flume、发布订阅消息系统Kafka等实用工具。本书还深入讲解了数据处理分析引擎Spark、全文搜索引擎Elasticsearch及分布式处理引擎Flink的工作原理和应用实例。最后,通过电商推荐系统实战和Flink实现电商用户行为分析两个案例,展示了大数据技术在实际业务中的应用。本书附带全书实例源代码、电子版本教程(下载方式见封底),以及可扫码观看的长达13个小时的部分实例操作视频,帮助读者更深入了解大数据技术的具体内容,非常适合对大数据技术感兴趣的读者,尤其是想要深入了解大数据技术原理和应用的开发者和管理者阅读。
本书根据PL/SQL的新版本进行了全面更新,涵盖从基础语法、程序控制到近期新的优化和调优增强等方面的知识,通过真实的实验、大量的示例讲解了PL/SQL技能,是一本逐步分解的、详尽的PL/SQL编程教程。读者可以按照本书的步骤一步一步地完成每一个关键任务,掌握Oracle 21c PL/SQL编程技术,深度探索PL/SQL编程技术及很好实践。本书既适合新手数据库开发人员和DBA阅读,也适合有一定经验的从业人员阅读。
这是一本从OLAP核心概念出发,以Presto为例,从整体执行流程到不同SQL的执行原理,完整呈现OLAP查询的核心流程和OLAP引擎设计思路,并指导读者形成OLAP引擎设计解决方案的专业技术工具书。本书不仅面向初级读者介绍了OLAP查询的基本原理和Presto使用方法,还从源码级剖析了OLAP引擎核心原理,包括SQL查询解析器、优化器、调度器、执行器等核心组件,并将内容扩展到OLAP引擎的常见高性能优化方案上。全书由浅入深,图文并茂,把晦涩难懂的内容讲解得透彻易懂。本书分为6篇,包括14章。第一篇(第1章和第2章)总体介绍业界常见的OLAP引擎并分析其优劣,讨论OLAP引擎的技术发展趋势及选型方法,介绍Presto背景知识及其使用方法、技巧。第二篇(第3章和第4章)串讲OLAP查询执行的整个过程,并概要性介绍查询解析器、优化器、调度器、执行器等核心模块的工作原理,
大数据时代,Oracle12c为云计算而改变。《名师讲坛 Oracle开发实战经典》以Oracle11g、12c版本为基础,通过丰富的实例、通俗易懂的语言、简洁明快的图示、极为详尽的视频,讲述了数据库开发的主要内容。全书分为3个部分,第1部分:Oracle开发前奏,主要包括数据库系统概述、Oracle的安装与基本使用;第2部分:SQL基础语法,主要内容有简单查询、限定查询与排序显示、单行函数、多表查询、分组统计查询、子查询、更新及事务处理、替代变量、表的创建与管理、完整性约束、其他数据库对象、用户权限及角色管理、数据库设计;第3部分:数据库编程,主要内容有PL/SQL编程基础、集合、游标、子程序、包、触发器、动态SQL、面向对象编程。。《名师讲坛 Oracle开发实战经典》还有如下特点: 1.视频极为详尽:视频长达45小时,共126讲,力求将Oracle开发知识一网打
本书全面深入地探讨了有效数据管理面临的挑战、复杂性及其巨大价值;定义了一套数据管理的指导原则,阐述了如何将这些原则应用于不同的数据管理功能领域;提供了企业级数据管理实践的功能框架,涵盖广泛采用的实践、方法、技术、职能、角色、交付成果和衡量标准;确立了数据管理的通用术语体系,成为数据管理专业人员很好实践的基础。本书为数据管理和IT专业人员、企业高管、知识工作者、教育者和相关研究人员提供了数据管理知识体系框架,帮助他们更好地管理数据、优化数字基础设施。
本书系统地介绍向量数据库的原理、技术实现及其应用,重点分析传统数据库在处理高维向量数据时的局限性,并提供相应的解决方案。本书分为4个部分,共13章,内容涵盖从理论基础到技术实践的多个方面,详细讨论高维向量表示中的信息丢失、嵌入空间误差和维度诅咒等问题,结合FAISS和Milvus等主流开源工具,深入剖析向量数据库的索引机制、搜索算法和优化策略。通过实际案例,展示向量数据库在推荐系统、行为分析、智能诊断、语义搜索等领域的应用,并特别强调企业级语义搜索系统的开发与部署经验。 本书不仅提供深度的理论指导,还通过丰富的案例帮助读者掌握如何构建高效的向量搜索引擎,适合从事搜索引擎与推荐系统开发的工程师,数据科学、人工智能及相关领域的从业者、研究人员,以及对向量数据库与相似性搜索感兴趣的读者,也可作为培训
Python是一种面向对象的脚本语言,其代码简洁优美,类库丰富,开发效率也很高,得到越来越多开发者的喜爱,广泛应用于Web开发、网络编程、爬虫开发、自动化运维、云计算、人工智能、科学计算等领域。预测技术在当今智能分析及其应用领域中发挥着重要作用,也是大数据时代的核心价值所在。随着AI技术的进一步深化,预测技术将更好地支撑复杂场景下的预测需求,其商业价值不言而喻。基于Python来做预测,不仅能够在业务上快速落地,还让代码维护更加方便。对预测原理的深度剖析和算法的细致解读,是本书的一大亮点。本书共分为3篇。第1篇介绍预测基础,主要包括预测概念理解、预测方法论、分析方法、特征技术、模型优化及评价,读者通过这部分内容的学习,可以掌握预测的基本步骤和方法思路。第2篇介绍预测算法,该部分包含多元回归分析、复杂
本书通过真实案例,全面介绍Python 3编程基础及其数据分析工具的应用,培养读者通过数据分析问题、解决问题以及对结果评价的能力。全书内容包括:Python 3基本配置和编程基础、编程进阶、数据预处理、数据描述与数据探索、绘图与可视化、统计推断、相关分析、关联分析、回归分析、主成分和因子分析、聚类、判别与分类、列联分析、对应分析、定性数据分析、神经网络和深度学习、时间序列分析、信号滤波等,将读者关注的基本数据分析方法进行剖析。
本书紧密结合当前边缘计算领域近期新的发展趋势与研究成果,本着务实具体、详略得当、启发创新的指导思想,系统、全面地介绍了边缘计算的原理与应用,包括基本概念、架构原理、核心技术、主要研究方向与挑战,以及多个应用的近期新研究进展。撰写本书时最艰难的是选择从哪些应用视角来讲述边缘计算。最终,我们选择了计算卸载、服务部署、视频分析、模型推断、联邦学习等当下应用最为广泛的若干应用进行了阐述。
这是一本能从业务、方法、场景3个维度帮助读者使用AI技术提升数据分析和数据化运营能力的著作。用扎实的理论框架、丰富的实践案例、实用的操作技巧,全面展示了如何用AI延伸业务分析广度、拓展业务分析深度、优化业务分析效能,从而达到帮助企业用智能的数据化运营实现业务持续增长的目的。 阅读并实践本书,你将有以下收获: (1)理解并掌握AI辅助数据分析的思路,以及应该具备的AI能力、方法和工具。 (2)系统掌握AI在数据分析报告中的创新应用,包括思维导图生成、报告材料整理、核心内容撰写以及报告试讲和优化等。 (3)掌握AI在市场分析和行业分析中的应用,包括数据采集、宏观分析、行业与市场概况分析、市场细分与目标市场定位、市场发展趋势与市场风险分析。 (4)掌握AI在竞争分析中的应用,包括收集竞争分析报告与数据、竞品调研
【为宏观掌握Oracle基础(第1~3章)】,介绍了进程管理、内存管理及存储等基础知识,并且讲解了常用Linux操作系统性能工具的使用及结果分析方法,旨在帮助读者了从宏观视角掌握Oracle数据库体系架构和进程组织方案。【微观理解Oracle原理(第4~8章)】,围绕Oracle内部运行原理展开讲解。首先,在Oracle数据结构的基础上讨论日志和回滚。其次,引入了排队论和排队系统中的概念,对比法讲解了Oracle的数据缓冲区高速缓存和共享池设计思想及运行原理。【串联Oracle运行流程(第9~11章)】,结合实践案例将从提交SQL至结果返回的整个过程串起来,首先总结归纳了Oracle算法和数据结构的重要知识点,打通了Oracle原理与数据结构之间的桥梁。其次,通过典型案例讲解AWR报告,让读者能够了解完整的Oracle诊断思路。再次,介绍了集群技术、OracleRAC及其日志结构。然后,对Orac