本书从初学者易于理解的角度,以通俗易懂的语言、丰富的实例、简洁的图表、传统和现代数据特征的对比,将大数据这一计算机前沿科学如数家珍地娓娓道来。既介绍了大数据和相关的基础知识,又与具体应用有机结合起来,并借助可视化图表的画面感立体地为读者剖析了大数据的技术和原理,非常便于自学。本书内容包括大数据概论、大数据采集及预处理、大数据分析、大数据可视化、Hadoop概论、HDFS和Common概论、MapReduce概论、NoSQL技术介绍、Spark概论、云计算与大数据、大数据相关案例等内容。本书既可以作为想了解大数据技术和应用的初学者的教材,也适合作为培训中心、IT人员、企业策划和管理人员的参考书。
本书是中山大学重点学科建设成果,获中国矿物岩石地球化学协会大数据与数学地球科学专业委员会推荐,是我国*部地质科学大数据与机器学习教材。本书是中山大学研究生试用研究型教材,对运用大数据挖掘与机器学习算法解决地球科学问题大有裨益。适合地质科学领域研究生和高年级本科生做教材,也可供科研人员研究时参考。它系统地介绍了地球科学大数据挖掘与机器学习的基本框架与原理,重点分析高维数据的降维、分类与预测、大图形社区结构识别、无限流数据处理、机器学习及人工智能地质学的建模过程,对必要的应用场景,使用Python语言给出案例。
技术是把双刃剑,当我们在积极拥抱新技术的同时,也不能忽视其所带来的风险,比如当今大数据时代个人隐私和安全问题。本书是两位作者结合各自出色的专业知识和丰富的从业经验为大众倾力奉献的一本大数据时代隐私问题的普及读物。书中展示了我们在家庭和工作中的日常活动是如何成为大数据收集的一部分的。同时,列举大量的大数据应用以及安全和隐私相关案例,包括企业如何利用大数据进行营销、执法机构如何利用大数据执法等,也包括不法分子如何利用非法或合法的手段获取数据,如何利用社交网络进行犯罪。针对上述问题,本书也列出了一些工具、技巧用来检查和防范,这在当前很有现实意义。
为顺应国内EPC 总承包工程推广的新形势, 提高企业风险管理水平, 普及工程保险知识, 特编写本书。 书中内容紧密结合国际先进工程保险理念, 对于在EPC 工程中涉及的工程险种、 安排、 采购、 合同后管理等问题均做了较为全面、 细致的分析。 同时, 列举了我国著名企业在海内外EPC 实践中实施保险策略的典型案例。本书可供从事EPC 项目或准备从事EPC 项目的公司领导、 项目经理、 风险管理人员、 监理、 咨询人员等作为岗位继续教育教材使用; 也可作为工程管理、 保险、 经贸专业在校研究生以及本科生的教学参考书或课外读物;也适合作为建设行业推行EPC 总承包模式进行系列培训的教材或参考用书。
在新媒体时代,如果对新闻报道、网上搜索的结果或者所谓的 专家告知 不加思考地完全相信,那你就等着上当受骗吧! 本书围绕当今*受瞩目的大数据科学理论,通过日本政府公布的公开数据,集中针对访日游客的增加、舆论调查的可靠性、 安倍经济学 的成果、东日本大地震后的状况、相对贫困、失业率的下降、年轻人远离ХХ、全球变暖问题、减肥、恩格尔系数的上升等10个主题进行数据解读,帮助读者模拟体验数据读取方法,提高理解和分析数据的能力,挖掘出数据背后隐藏的真相。 作为 大数据分析 的超级入门书,即使不擅长数学、不了解统计学的人,读完本书也可以彻底掌握数据解读方法!
本书基于作者近几年来的研究开发成果及应用实践,对物联网大数据技术体系进行了系统归纳,阐述了物联网环境下感知数据的特性、数据模型、事务模型以及调度处理方法等核心概念及关键技术,并对物联网大数据存储、管理、计算与分析的基本概念和关键技术进行了剖析。本书还介绍了自行研发的面向物联网的ChinDB实时感知数据库系统以及针对云计算环境下物联网大数据管理与应用的DeCloud云平台,介绍了它们在智能交通、智能电厂、教育、安全监控等多个行业的应用。书中所有实例,均来自作者所在团队的实际应用,大部分在物联网项目中得到了实践应用。本书对物联网应用的开发以及两化融合、工业4.0环境下的大数据处理分析具有重要参考价值。
本书以大数据为研究背景,系统分析了传统数据技术当前存在的问题以及面临的挑战,并对比了当前主流的面向大数据的数据库解决方案,在此基础上阐述了笔者的研究工作:基于MapReduce平台高处处理大数据的OLAP研究。书中反应了当前大规模数据仓库研究的热点和成果,值得大数据研究的人员参考和应用。
本书内容简介:数据挖掘和文本挖掘是当前信息技术中的一个重要研究领域;将遗传算法和社会演化算法应用于数据及文本挖掘方法研究,具有较大的理论意义和实用价值本书研究了基于遗传算法和社会演化算法的数据挖掘和文本挖掘方法,主要包括数据挖掘和文本挖掘中的属性约简问题、聚类问题,并将其应用于产品研发决策中所做主要工作包括:提出一种基于遗传算法和k-medoids算法的新的聚类方法;采用遗传算法和模式聚合进行文本特征降维;采用遗传算法和潜在语义索引进行文本特征降维;采用社会演化算法进行聚类;采用混沌社会演化算法进行聚类;采用改进的遗传算法和社会演化算法进行文本聚类研究;将文本挖掘应用到产品研发决策中,构建产品研发文本知识地图,以期提高产品研发的效率和质量。
本书是《实用数据结构基础(第四版)》(陈元春、王中华、张亮、王勇编著,中国铁道出版社出版) 的配套学习指导书。全书内容分为5部分:教学内容指导(包括对主教材第1~10章的知识点分析、典型 习题分析和各章习题解答);自主设计实验指导(对10个自主设计实验的设计思想、算法分析进行了详细 指导);模拟试卷;模拟试卷参考答案;数据结构课程设计报告样例。 本书对数据结构的概念和原理的阐述通俗易懂,例子翔实;习题难易适中,题型丰富;对数据结构 基本运算的分析注重实现的过程。本书以C/C++语言作为算法的描述语言,对于书中的实验和一些重要 的算法均给出了完整的C/C++语言源程序,并全部在Visual C++ 6.0环境下运行通过。 本书适合作为普通高等院校计算机类专业数据结构课程的教学辅导书,也可作为成
数据仓库与数据挖掘是决策支持的两项重要技术,它们共同的特点是都需要利用大量的数据资源,并从数据资源中提取信息和知识。由于数据资源丰富,因此数据仓库与数据挖掘的决策支持效果显著。 本书系统介绍数据仓库原理,联机分析处理,数据仓库设计与开发,数据仓库的决策支持,数据挖掘原理,基于信息论的决策树方法,基于集合论的粗糙集方法、k—均值聚类、关联规则挖掘,仿生物技术的神经网络,遗传算法,公式发现,知识挖掘,文本挖掘与web挖掘。 本书从数据仓库的兴起来说明决策支持的特点,从数据挖掘的理论基础来说明数据挖掘的方法,并通过实例来详细讲解。希望读者在学习之后,亲自在计算机上去实践,这样才能更有效地掌握数据挖掘的方法。
粗糙集理论是一种不确定性数据分析工具,近年来在特征选择、分类学习和规则提取等应用方面取得了巨大成功,并逐渐成为信息科学为活跃的研究领域之一。本书系统地论述了基于粗糙集的属性约简理论和方法,信息系统之间的信息通讯以及关于粗糙群的一些本质问题。主要内容有:基于覆盖粗糙集的属性约简模型建立及约简结构性质分析,基于广义粗糙集的属性约简模型建立及约简结构性质分析,基于广义粗糙集的信息系统之间等价属性约简理论与方法,基于模糊粗糙集的信息系统之间等价属性约简理论与方法,粗糙群的理论研究,以及这些理论在数据挖掘中的应用。 本书可以作为理工科大学计算机、应用数学、自动控制、信息科学以及管理工程等专业的高年级本科生、研究生以及博士生的教材,同时对有关领域的研究人员和工程技术人员也有重要的参考
MongoDB是一种面向文档的分布式数据库,可扩展,表结构自由,并且支持丰富的查询语句和数据类型。时至今日,MongoDB以其灵活的数据存储方式逐渐成为IT行业非常流行的一种非关系型数据库(NoSql)。 本书从学习与实践者的视角出发,本着通俗精简、注重实践、突出精髓的原则,精准剖析了MongoDB的诸多概念和要点。全书共分4个部分,分别从基础知识、深入理解MongoDB、监控与管理MongoDB和应用实践几个维度详细地介绍了MongoDB的特点及应用实例。 本书适合有海量数据存储需求的人员、数据库管理开发人员、数据挖掘与分析人员以及各类基于数据库的应用开发人员。读者将从书中获得诸多实用的知识和开发技巧。
本书从理论知识入手,结合数据仓库的概念帮助读者更好地理解Hive,在掌握Hive相关理论知识的基础上,逐步深入地学习Hive。 工欲善其事,必先利其器 ,首先从创建虚拟机并安装Linux操作系统开始逐步完成Hive的部署,然后在部署完成的Hive环境基础上,学习Hive数据定义语言、Hive数据操作语言和Hive数据查询语言的相关操作,在学习了上述三种语言之后,接下来深入学习Hive的其他功能,包括Hive内置函数、Hive自定义函数、Hive的新特性事务以及Hive的相关优化,从而帮助读者掌握Hive的强大功能和特性。后,本书通过一个综合项目 教育大数据分析平台,使读者对Hive数据仓库在实际应用中涉及的相关知识内容具有更深入的理解,在此项目中不仅会涉及使用Hive实现数据仓库分层、数据转换和数据分析的相关操作,而且还涉及使用Sqoop将数据仓库中的数据进行导出和导入,以
本书不仅系统介绍各种传统的数据结构以及搜索和内、外排序算法,还引入了一些新数据结构,如伸展树和跳表。本书在重视理论的同时,强调应用性和实践性,对上机实习赋予足够重视。每章包括程序设计题,并将实习指导和实习题作为专门的章节编写。 全书条理清晰,内容详实。书中算法都有完整的C++程序。程序结构清晰,构思精巧。所有程序都已在VC++环境下编译通过并能正确运行。本书深入浅出,配有大量的实例和图示,并有丰富的习题和实习题,适于自学。 本书可作为电气信息类、电子信息科学类以及计算机、管理信息系统、电子商务,教育技术等其他相关专业学生数据结构课程的教材,并可供其他计算机应用工程技术人员参考。
数据仓库及联机分析处理是数据库技术发展和应用的一个新阶段,本书全面、详细地介绍了构建数据仓库以及进行多维数据分析的技术,并力求把数据仓库理论以及在该理论领域的相关应用尽可能完美地融合起来,其内容涵盖数据仓库的构建理论、构建示例、前端多维数据的展示及分析技术、对数据仓库及多维数据集的管理和维护等技术。本书以目前流行的Microsoft SQl Server 2000数据库管理系统作为实践平台,以便于读者实践。本书语言通俗易懂,实例丰富。 本书非常适合作为计算机、商科及相关专业本科学生学习数据仓库及多维数据分析技术的教材,同时也适合作为研究生数据仓库等课程的教材。
《数据挖掘原理、算法及应用》以各类数据挖掘算法为核心,以智能数据分析技术的发展为主线,结合作者自身的研究和应用经验,阐述数据挖掘研究领域的主要理论和典型算法。全书共分8章:第1章为绪论;第2-5章分别介绍数据挖掘的主要技术、各类典型算法及其编程实现,包括数据预处理技术,关联规则挖掘技术、分类技术,聚类技术等几大类技术和其中包含的典型算法;第6-8章分别简要介绍一些数据挖掘的应用专题,包括时间序列数据挖掘、Weh挖掘、空间数据挖掘等。
本书全面、系统地介绍了数据仓库的原理、开发和应用技术。主要内容包含数据仓库、联机分析处理和数据挖掘的基本概念、体系结构、开发模型、项目规划、创建过程和应用管理,涵盖了数据仓库的完整生命周期。本书力求从务实的角度出发,揭开笼罩在数据仓库、联机分析处理和数据挖掘上面的神秘面纱,使读者能对数据仓库、联机分析处理和数据挖掘有一个正确认识,以推动数据仓库在我国的健康发展。 本书为授课教师免费提供电子教案,此教案用PowerPoint制作,可以任意修改。需要者可以从中国水利水电出版社网站www.waterpub.com.cn下载,也可与北京万水电子信息有限公司联系,联系电话:(010)82564395。
数据仓库与数据挖掘都是从数据资源提取信息和知识进行辅助决策。由于数据资源丰富,数据仓库与数据挖掘辅助决策效果十分显著。 本书系统介绍数据仓库原理、联机分析处理、数据仓库设计与开发、数据仓库的决策支持应用,数据挖掘原理、信息论的决策树方法、集合论的粗糙集方法、关联规则、公式发现、神经网络、遗传算法、文本挖掘与Web挖掘,以及数据仓库与数据挖掘的发展。 本书对数据仓库的系统介绍,在于突出决策支持的本质。对数据挖掘的各类方法均介绍了它们的理论基础和实现方法,并通过例子进行了说明。 本书的特点是从数据仓库和数据挖掘的兴起与演变来说明它们的本质,通过实例来解释它们的原理,这样便于读者学习和掌握,适于本科生和研究生使用。
近年来,大数据成为学术界和工业界的热点,其 本质就是海量数据分析。海量数据的来源包括互联网 、传感器、生产生活、科学观测、科学实验等。海量 数据分析不仅可以帮助人们取得新的科学发现,也可 以推动技术的适应性、个性化和健壮性方面的进步。 海量数据分析是一个跨学科的研究领域,理解本书的 内容需要具备计算机科学、统计学和优化理论的基础 知识。美国国家学术院国家研究委员会编著的《海量 数据分析前沿》从计算和推理的角度分析了与海量数 据分析相关的前沿问题,重点介绍海量数据挖掘分析 以及流数据挖掘的进展,讨论了并行和分布式系统架 构方面的*发展,具体内容包括数据建模、任务建 模、计算复杂性问题分析、数据采样以及人工参与的 数据分析方法等。
随着Python应用领域的拓展,越来越多的人将Python用于处理大型数值数据集,使用标准格式来进行数据的存储和通信也显得越来越重要,而HDF5也正迅速成为人们存储科学数据的选择。本书向任何有Python数据分析基本背景的人介绍如何在Python下使用HDF5。 本书将着重于HDF5的本地功能集,而不是Python的高层抽象。熟悉Python和NumPy的读者,更容易阅读和掌握本书的内容。本书适合有一定基础的Python开发者,尤其适合要使用Python开发数据存储和处理等相关应用的读者阅读参考。
本书是一本介绍数据仓库和数据挖掘的图书。全书力求深入浅出、通过浅显易懂的语言及实例介绍数据仓库与数据挖掘的基本概念及相关理论。从数据仓库的定义、结构、设计、数据访问方法及应用等方面对数据仓库做了较详细的介绍。从数据挖掘的定义、数据预处理方法、数据挖掘发现知识的类型及数据挖掘常用算法等几方面对数据挖掘的基本知识和算法等理论做了介绍。本书特别介绍了SQL Server2000数据挖掘工具应用和SPSS数据挖掘工具应用。后,给出了一个数据挖掘的应用实例。本书总的指导思想是在掌握基本知识和基本理论的基础上,更强调实际应用能力的培养。 本书可作为普通高等院校计算机科学与技术专业、软件工程专业或信息类等其他相关专业的教材,也可作为有关数据仓库与数据挖掘方面的培训教材,以及所有想学习数据仓库与数据挖掘知识的人
本书是数据库的实验教材,从测试DBMS边界的角度出发,通过案例现象引导读者主动思考现象的成因,对SQL的基本知识,数据库系统的完整性控制、安全性控制、并发控制、数据备份与恢复、性能检测、索引进行实验内容组织。每个实验还有习题及其参考答案。 通过本书附录可了解数据库的逻辑结构,搭建实验环境,并将数据库结构和数据直接导入到计算机中,相关数据和资料可在清华大学出版社网站下载。
本书是中国人民大学出版社出版的教材《统计数据分析基础教程(第二版)——基于SPSS 20和Excel 2010的调查数据分析》的配套辅导书。 由于本次修订对教材内容进行了更加适当的筛选,同时对例题和上机实验题进行了大幅更新,于是本同步配套辅导书也做了相应的修订。 本书以习题和上机实验指导的方式给出了教材中“思考题与上机实验题”的解答,以便帮助读者消化教材内容。本书包含10章的上机实验指导共32个。包括:*抽样、调查问卷制作、问卷数据的录入与清理、单选题的一维频率分析、两个单选题的交叉表分析、多选题的一维频率分析和交叉表分析、描述统计分析、假设检验、单因素方差分析、线性相关分 析与线性回归分析等。 本书可作为各级各类高等院校本科生统计数据分析的入门书,也可以作为MBA学生、研究生以及从事统计数据分析工作的人士