9787115613639 Python编程 从入门到实践 第3版 109.80 9787115551870 Python编程快速上手 让繁琐工作自动化 第2版 89.00 9787115642363 Python极客项目编程(第2版) 69.80 9787115562883 Python编程实战 妙趣横生的项目之旅 99.90 《Python编程 从入门到实践 第3版》 本书是享誉全球的Python入门书,影响了超过250万读者。全书分两部分:第一部分介绍用Python编程所必须了解的基本概念,包括强大的Python库和工具,以及列表、字典、if语句、类、文件和异常、代码测试等内容;第二部分将理论付诸实践,讲解如何开发三个项目,包括简单的2D游戏、利用数据生成交互式的信息图以及创建和定制简单的Web应用,并帮助读者解决常见编程问题和困惑。第3版进行了全面修订:使用了文本编辑器VS Code,新增了介绍removeprefix()方法和removesuffix()方法的内容,并且在项目中利用了Matplotlib和Plotly的最新特性,等等。
《编程不难:全彩图解 微课 Python编程》是 鸢尾花数学大系 从加减乘除到机器学习 丛书的第一册,也是 编程 板块的第一册, 着重介绍如何零基础入门学 Python 编程。虽然《编程不难:全彩图解 微课 Python编程》主要讲解 Python 编程,但是也离不开数学。《编程不难:全彩图解 微课 Python编程》尽量 避免讲解数学概念公式,而且用图形和近乎口语化的语言描述程序设计、数据分析、机器学习背后常用的 数学思想。 《编程不难:全彩图解 微课 Python编程》分为预备、语法、绘图、数组、数据、数学、机器学习、应用八大板块, 共 36 章, 内容 跨度 极大! 从 Python 基本编程语法,到基本可视化工具,再到各种数据操作工具,还介绍常用 Python 实现的各种复 杂数学运算,进入数据分析和机器学习之后,还讲解如何搭建应用 App。我们可以把《编程不难:全彩图解 微课 Python编程
《数据有道 : 数据分析 图论与网络 微课 Python编程》是 鸢尾花数学大系 从加减乘除到机器学习 丛书的第三板块 ( 实践板块 ) 中的一本关于数据 科学的分册。 实践 这个板块,我们将会把学到的编程、可视化, 特别是数学工具应用到具体的数据科学、 机器学习算法中,并在实践中加深对这些工具的理解。 《数据有道 : 数据分析 图论与网络 微课 Python编程》可以归纳为 7 大板块 数据说、数据处理、时间数据、图论基础、图的分析、图与矩阵、图论实践。 这 7 个板块 ( 共 25 章内容 ) 都紧紧围绕一个主题 数据! 《数据有道 : 数据分析 图论与网络 微课 Python编程》以数据为名,以好奇心和疑问为驱动,主动使用 编程 可视化 数学 工具进行探索。《数据有道 : 数据分析 图论与网络 微课 Python编程》将 会回顾鸢尾花书前五本主要的工具,让大家对很多概念从似懂非懂变
《可视之美:数据可视化 数学艺术 学术绘图 Python创意编程》是 鸢尾花数学大系:从加减乘除到机器学习 丛书中编程板块的第二册。编程板块第一册《编程不难》着重介绍如何零基础入门Python编程,《可视之美:数据可视化 数学艺术 学术绘图 Python创意编程》则在《编程不难》基础之上深入探讨如何用Python完成数学任务及板块数据可视化。 《可视之美:数据可视化 数学艺术 学术绘图 Python创意编程》是本系列中的一本真正意义上的 图册 。内容覆盖科技制图、计算机图形学、创意编程、趣味数学实验、数学科学、机器学习等。《可视之美:数据可视化 数学艺术 学术绘图 Python创意编程》 毫无节制 地展示数学之美,而且提供特别实用且容易复制的创作思路、做图技巧、编程代码。 《可视之美:数据可视化 数学艺术 学术绘图 Python创意编程》包含8个板块共36章内容。前5个
本书是一本在PyTorch环境下学习机器学习和深度学习的综合指南,可以作为初学者的入门教程,也可以作为读者开发机器学习项目时的参考书。 本书讲解清晰、示例生动,深入介绍了机器学习方法的基础知识,不仅提供了构建机器学习模型的说明,而且提供了构建机器学习模型和解决实际问题的基本准则。 本书添加了基于PyTorch的深度学习内容,介绍了新版Scikit-Learn。本书涵盖了多种用于文本和图像分类的机器学习与深度学习方法,介绍了用于生成新数据的生成对抗网络(GAN)和用于训练智能体的强化学习。后,本书还介绍了深度学习的新动态,包括图神经网络和用于自然语言处理(NLP)的大型transformer。 无论是机器学习入门新手,还是计划跟踪机器学习进展的研发人员,都可以将本书作为使用Python进行机器学习的不二之选。 学完本书,你将能够: 探索机器从数
在本书中,你会看到用来处理文本、数据类型、算法、数学计算、文件系统、网络通信、Internet、XML、Email、加密、并发性、运行时和语言服务等各个方面的实用代码和解决方案。在内容安排上,每一节都会全面介绍一个模块,并提供一些很有价值的补充资源链接,这使得本书成为一本理想的Python标准库参考手册。
这是一本全面介绍Python面向对象编程的图书。本书共分为4部分。第1章至第6章深入讲解了面向对象编程的核心原则和概念,以及它们在Python中的实现方式。第7章至第9章仔细探讨了Python的数据结构、内置类和方法等,以及如何从面向对象编程的角度进行分析和应用。第10章至第12章探讨了设计模式及其在Python中的实现。第13章和第14章涵盖了测试和并发两个重要主题。整本书以一个机器学习分类算法的实现案例贯穿始终,并不断探讨各种实现方式的优劣。 这是一本全面介绍Python面向对象编程的图书。本书共分为4部分。第1章至第6章深入讲解了面向对象编程的核心原则和概念,以及它们在Python中的实现方式。第7章至第9章仔细探讨了Python的数据结构、内置类和方法等,以及如何从面向对象编程的角度进行分析和应用。第10章至第12章探讨了设计模式及其在Python中的实现。
本书详细地介绍了Python语言的一些高级功能以及常见数据类型的高级用法,非常适合有一定基础的读者深入学习Python编程。本书的主要内容包括常见内置类型(数值、字符串和集合等)的高级用法和潜在的陷阱,用于文本处理的格式化方法和正则表达式,用于数值计算和大规模数据处理的math包和numpy包等。此外,文件存储、随机数生成和图表绘制也是本书的重要内容。本书还开发了一个 RPN脚本解释器 项目,该项目贯穿本书的各个章节,通过对该项目的学习,你也可以开发出自己的 语言 。
nbsp nbsp《Python机器学习一本通》结合了Python和机器学习两个热门领域,通过易于理解的知识讲解,帮助读者学习和掌握机器学习。 全书共20章,分为5篇。其中第1篇为基础入门篇,主要讲述Python机器学习入门、设置机器学习的环境、机器学习基础和统计分析数学基础等内容;第2篇为数据预处理篇,主要讲述了产生和加载数据集、数据预处理等内容;第3篇为机器学习算法篇,主要讲述了回归分析、决策树分析、支持向量机、聚类分析、集成学*、*经网络学习、卷积网络学习和模型评价等内容;第4篇为机器学习应用篇,主要讲述了图像识别、语音识别、期刊新闻分类和图形压缩4个机器学习应用;第5篇为项目实战篇,主要讲述了社交好友分析、电商点击率预估等。 《Python机器学习一本通》适用于想了解传统机器学习算法的学生和从业者,想知道如何高效实现机器学习
本书是一本关于Python数据整理和数据质量的实用指南,主要介绍了如何使用Python进行数据清洗、转换和整合,以及如何确保数据的准确性和一致性。本书涵盖了数据整理基础、数据清洗、数据转换、数据整合、数据质量检查和数据可视化等内容。通过丰富的实例和代码示例,读者可以掌握Python数据整理和数据分析的相关技能。无论你是数据分析师、数据科学家还是其他领域的数据从业者,本书都不仅能够帮助你提高工作效率,还能够让你更好地理解和应用数据科学相关的知识和技能。
Python是一门开源的计算机编程语言,凭借其易学、灵活等特点,得到了越来越多人的认可和青睐。金融科技日新月异,金融行业的数字化、科技化和智慧化快速推进,Python在金融领域有着很好的应用现状和前景。 本书在上一版的基础上进行了内容升级,持续聚焦Python在金融分析与风险管理的应用,第2版从原先的12章扩充至15章,并依次划分为基础篇(共5章)、中阶篇(共5章)以及高阶篇(共5章),基础篇结合金融场景演示了Python语言以及NumPy、pandas、Matplotlib、SciPy以及statsmodel等金融领域常用的第三方模块的编程方法;中阶篇通过Python编程结合金融实例,依次探讨利率、汇率、债券、股票、互换合约、期货合约等产品的定价、风险测度以及风险管控等内容;高阶篇则融合Python与金融案例,探究了期权的定价、希腊字母、动态对冲、隐含波动率、交易策略及其他延
9787115546081 Python编程 从入门到实践 第2版 89.00 9787115551870 Python编程快速上手 让繁琐工作自动化 第2版 89.00 9787115449764 Python极客项目编程 69.00 《Python编程 从入门到实践 第2版》 本书是针对所有层次Python读者而作的Python入门书。全书分两部分:*部分介绍用Python编程所必须了解的基本概念,包括强大的Python库和工具,以及列表、字典、if语句、类、文件与异常、代码测试等内容;第二部分将理论付诸实践,讲解如何开发三个项目,包括简单的2D游戏、利用数据生成交互式的信息图以及创建和定制简单的Web应用,并帮助读者解决常见编程问题和困惑。第2版进行了全面修订,简化了Python安装流程,新增了f字符串、get()方法等内容,并且在项目中使用了Plotly库以及新版本的Django和Bootstrap,等等。 《Python编程快速上手 让繁琐工作自动化 第2版》 本书是一本面向初学者的Python编程
本书提供了一种独特的方法来讲解Python编程入门,内容符合新的ACM/IEEECS和相关的计算课程倡议,以及由美国国家科学基金会赞助的数据科学本科课程。内容涵盖了新的主题和应用的覆盖面,模块化架构使教师能够方便地调整文本,适应课程需求。通过本书,你将学习: 538个案例研究,471道练习题和项目,557道自我测验题。基于IPython和Jupyter Notebook的即时反馈。问题求解、算法开发、控制语句、函数等基础知识。 列表、元组、字典、集合、Numpy数组、pandas Series和DataFrame。 2D/3D的静态、动态和交互式可视化。 字符串、文本文件、JSON序列化、CSV、异常。 过程式、函数式和面向对象的程序设计方法。 数据科学入门 :基础统计、模拟、动画、随机变量、数据整理、回归。 隐私、安全、伦理、可重现、透明。 AI、大数据和云数据科学案例研究:NLP、Twitter数据挖掘、IBM Wa
《编程真好玩 小朋友都喜欢的Scratch编程书!》 本书设计了不同的卡通人物,通过情景式的对话,在编程教室与老师一边聊天一边完成10种游戏。将编程知识轻松愉快地融入学习之中。10个项目循序渐进、由易到难,安排合理。 卖点1 模拟真实的编程教室,6个角色人物,沉浸式编程体验。 有老师,有学霸,有学渣,还有一条可爱的狗狗,编程教室里的一切都那么有趣,赶快加入吧! 卖点2 每个项目都配二维码扫码看视频! 项目开始位置都有二维码,哪怕是认字不全的小朋友跟着视频也可以轻松做出完美效果! 卖点3 项目难度循序渐进,10个项目包含了Scratch的方方面面! 由易到难,给小朋友继续探索的信心和勇气!做完10个项目,Scratch功能都掌握,遇到其他不同项目也能触类旁通! 卖点4 提供视频资料和技术交流群支持! 扫码关注公众号即可获取视频下载
Python的Django框架是目前流行的一款重量级网站开发框架,具备简单易学、搭建快速、功能强大等特点。本书从简单的HTML、CSS、JavaScript开始介绍,再到Django的基础知识,融入了大量的代码案例、重点提示、图片展示,做到了手把手教授。本书基于Django 3.0.7版本、Python 3.8.5版本、Rest Framework 3.11.1版本、Vue.js 4.5.4版本、数据库MySQL 80版本进行讲解。本书还提供了一个商业级别的项目案例,采用目前主流的前后端分离开发技术,以便读者可以体验正式项目的开发过程。熟练掌握本书内容后,读者将达到中级Web项目开发工程师的技术水平。
\\\"Python 的丰富模块(module)以及广泛的应用范围,使Python 成为当下重要的计算机语言之一。本书尝试将Python 常用模块与应用分门别类组织起来,相信只要读者遵循本书实例,一定可以轻松学会Python 语法与应用,逐步向Python 高手之路迈进,这也是撰写本书的目的。 为了提升阅读体验,《Python 归来: 增强版》为彩色印刷,在图书结构、案例选择以及代码样式上都进行了细心设计,力争呈现给读者一本与众不同的编程图书。本书适合所有对Python 编程感兴趣的读者阅读,同时也可以作为院校和培训机构的相关专业教材。 \\\"
《Python编程从小白到大牛》包括3篇,共16章。基础篇(第1~7章)包括Python概述,数据类型和变量,流程控制,数据结构,函数,模块、包和文件,以及错误、异常和调试;进阶篇(第8~11章)包括面向对象编程,进程和线程,网络编程,以及Python数据处理和数据库编程;应用篇(第12~16章)包括Web开发应用,图形界面GUI和绘图应用,科学计算与数据分析应用,深度学习应用,以及云计算和自动化运维应用。《Python编程从小白到大牛》还包括大量实战案例,通过理论和实战结合的方式帮助读者快速学习撑握Python应用。 《Python编程从小白到大牛》可作为人工智能、机器学习、人脸识别等应用领域工程技术人员的参考手册,也可作为大中专院校人工智能、大数据科学与技术、自动化、机器人工程、智能仪器仪表、机电一体化等专业及社会培训班有关Python课程的教材。
1、《Python文本数据》书中将自然语言处理技术和统计处理技术视为工具,不会涉及到其繁琐的原理、数学定理等。书中利用操作简便的Python程序包来处理文本数据,探索文本挖掘可以帮我们做到的事情,而非用尖端的技术进行程序设计。书中用简单明快的例子演示应用效果,并配有视频展示,下载资料包即可获取视频和案例二维码! 本书通过5个章节介绍相关知识,第1章介绍文本挖掘的整体印象;在第2章中概括介绍了本书后面用到的Python的必要知识;第3章中介绍文本处理相关的基本概念和观点;第4章中利用Python学习作为基础处理的频率分析方法和其能得到的结果;后,在第5章中介绍文本挖掘需要用到的各种具体方法以及在Python中的处理步骤。 2、《Python数值计算与模拟》本书从传统的数值计算技术到先进的多智能体模拟基础,均边展示Python程序,边对其进
本书由Python pandas项目创始人Wes McKinney亲笔撰写,详细介绍利用Python进行操作、处理、清洗和规整数据等方面的具体细节和基本要点。你将在阅读过程中学习到新版本的pandas、NumPy、IPython和Jupyter。 本书由Wes McKinney创作,他是Python pandas项目的创始人。本书是对Python数据科学工具的实操化、现代化的介绍,非常适合刚学Python的数据分析师或刚学数据科学以及科学计算的Python编程者。数据文件和相关的材料可以在GitHub上找到:使用IPython shell和Jupyter notebook进行探索性计算;学习NumPy(Numerical Python)的基础和高级特性;入门pandas库中的数据分析工具;使用灵活工具对数据进行载入、清洗、变换、合并和重塑;使用matplotlib创建富含信息的可视化;将pandas的groupby功能应用于对数据集的切片、分块和汇总;分析并操作规则和不规则的时间序列数据;利用完整的、详细的示例学习如
本书提供了一种独特的方法来讲解Python编程入门,内容符合 新的ACM/IEEECS和相关的计算课程倡议,以及由美国国家科学基金会赞助的数据科学本科课程。内容涵盖了 新的主题和应用的覆盖面,模块化架构使教师能够方便地调整文本,适应课程需求。