本书是Python数学分析经典畅销书的升级版,由Python pandas项目的创始人Wes McKinney撰写。自2012年第1版出版以来,迅速成为该领域的权威指南,并且为了与时俱进,作者也在对本书内容进行持续更新,以摒弃一些过时、不兼容的工具,添加新的内容,用以介绍一些新特性、新工具及方法。本书第3版针对Python 3.10和pandas 1.4进行了更新,并通过实操讲解和实际案例向读者展示了如何高效解决一系列数据分析问题。读者将在阅读过程中学习新版本的pandas、NumPy、IPython和Jupyter。
《Python编程 从入门到实践 第3版》 本书是享誉全球的Python入门书,影响了超过250万读者。全书分两部分:第一部分介绍用Python编程所必须了解的基本概念,包括强大的Python库和工具,以及列表、字典、if语句、类、文件和异常、代码测试等内容;第二部分将理论付诸实践,讲解如何开发三个项目,包括简单的2D游戏、利用数据生成交互式的信息图以及创建和定制简单的Web应用,并帮助读者解决常见编程问题和困惑。第3版进行了全面修订:使用了文本编辑器VS Code,新增了介绍removeprefix()方法和removesuffix()方法的内容,并且在项目中利用了Matplotlib和Plotly的最新特性,等等。 《Python编程快速上手 让繁琐工作自动化 第2版》 本书是一本面向初学者的Python编程实用指南。本书不仅介绍了Python语言的基础知识,而且通过案例实践教读者如何使用这些知识和技能。本书的第一部
《机器学习 : 全彩图解 微课 Python编程》是 鸢尾花数学大系:从加减乘除到机器学习 丛书的最后一册,前六本解决了编程、可视化、数学、 数据方面的诸多问题,而《机器学习 : 全彩图解 微课 Python编程》将开启机器学习经典算法的学习之旅。 《机器学习 : 全彩图解 微课 Python编程》设置了 24 个话题,对应四大类机器学习经典算法(回归、分类、降维、聚类),覆盖算法包括: 回归分析、多元线性回归、非线性回归、正则化回归、贝叶斯回归、高斯过程、k 最近邻分类、朴素贝叶 斯分类、高斯判别分析、支持向量机、核技巧、决策树、主成分分析、截断奇异值分解、主成分分析进阶、 主成分分析与回归、核主成分分析、典型相关分析、 k 均值聚类、高斯混合模型、最大期望算法、层次聚类、 密度聚类、谱聚类。 《机器学习 : 全彩图解 微课 Python编程》选取算
9787115613639 Python编程 从入门到实践 第3版 109.80 9787115551870 Python编程快速上手 让繁琐工作自动化 第2版 89.00 9787115642363 Python极客项目编程(第2版) 69.80 9787115562883 Python编程实战 妙趣横生的项目之旅 99.90 《Python编程 从入门到实践 第3版》 本书是享誉全球的Python入门书,影响了超过250万读者。全书分两部分:第一部分介绍用Python编程所必须了解的基本概念,包括强大的Python库和工具,以及列表、字典、if语句、类、文件和异常、代码测试等内容;第二部分将理论付诸实践,讲解如何开发三个项目,包括简单的2D游戏、利用数据生成交互式的信息图以及创建和定制简单的Web应用,并帮助读者解决常见编程问题和困惑。第3版进行了全面修订:使用了文本编辑器VS Code,新增了介绍removeprefix()方法和removesuffix()方法的内容,并且在项目中利用了Matplotlib和Plotly的最新特性,等等。
《编程不难:全彩图解 微课 Python编程》是 鸢尾花数学大系 从加减乘除到机器学习 丛书的第一册,也是 编程 板块的第一册, 着重介绍如何零基础入门学 Python 编程。虽然《编程不难:全彩图解 微课 Python编程》主要讲解 Python 编程,但是也离不开数学。《编程不难:全彩图解 微课 Python编程》尽量 避免讲解数学概念公式,而且用图形和近乎口语化的语言描述程序设计、数据分析、机器学习背后常用的 数学思想。 《编程不难:全彩图解 微课 Python编程》分为预备、语法、绘图、数组、数据、数学、机器学习、应用八大板块, 共 36 章, 内容 跨度 极大! 从 Python 基本编程语法,到基本可视化工具,再到各种数据操作工具,还介绍常用 Python 实现的各种复 杂数学运算,进入数据分析和机器学习之后,还讲解如何搭建应用 App。我们可以把《编程不难:全彩图解 微课 Python编程
《数据有道 : 数据分析 图论与网络 微课 Python编程》是 鸢尾花数学大系 从加减乘除到机器学习 丛书的第三板块 ( 实践板块 ) 中的一本关于数据 科学的分册。 实践 这个板块,我们将会把学到的编程、可视化, 特别是数学工具应用到具体的数据科学、 机器学习算法中,并在实践中加深对这些工具的理解。 《数据有道 : 数据分析 图论与网络 微课 Python编程》可以归纳为 7 大板块 数据说、数据处理、时间数据、图论基础、图的分析、图与矩阵、图论实践。 这 7 个板块 ( 共 25 章内容 ) 都紧紧围绕一个主题 数据! 《数据有道 : 数据分析 图论与网络 微课 Python编程》以数据为名,以好奇心和疑问为驱动,主动使用 编程 可视化 数学 工具进行探索。《数据有道 : 数据分析 图论与网络 微课 Python编程》将 会回顾鸢尾花书前五本主要的工具,让大家对很多概念从似懂非懂变
《可视之美:数据可视化 数学艺术 学术绘图 Python创意编程》是 鸢尾花数学大系:从加减乘除到机器学习 丛书中编程板块的第二册。编程板块第一册《编程不难》着重介绍如何零基础入门Python编程,《可视之美:数据可视化 数学艺术 学术绘图 Python创意编程》则在《编程不难》基础之上深入探讨如何用Python完成数学任务及板块数据可视化。 《可视之美:数据可视化 数学艺术 学术绘图 Python创意编程》是本系列中的一本真正意义上的 图册 。内容覆盖科技制图、计算机图形学、创意编程、趣味数学实验、数学科学、机器学习等。《可视之美:数据可视化 数学艺术 学术绘图 Python创意编程》 毫无节制 地展示数学之美,而且提供特别实用且容易复制的创作思路、做图技巧、编程代码。 《可视之美:数据可视化 数学艺术 学术绘图 Python创意编程》包含8个板块共36章内容。前5个
本书是一本在PyTorch环境下学习机器学习和深度学习的综合指南,可以作为初学者的入门教程,也可以作为读者开发机器学习项目时的参考书。 本书讲解清晰、示例生动,深入介绍了机器学习方法的基础知识,不仅提供了构建机器学习模型的说明,而且提供了构建机器学习模型和解决实际问题的基本准则。 本书添加了基于PyTorch的深度学习内容,介绍了新版Scikit-Learn。本书涵盖了多种用于文本和图像分类的机器学习与深度学习方法,介绍了用于生成新数据的生成对抗网络(GAN)和用于训练智能体的强化学习。后,本书还介绍了深度学习的新动态,包括图神经网络和用于自然语言处理(NLP)的大型transformer。 无论是机器学习入门新手,还是计划跟踪机器学习进展的研发人员,都可以将本书作为使用Python进行机器学习的不二之选。 学完本书,你将能够: 探索机器从数
本书将帮助你使用Python编写出高质量、高效的并且易于与其他语言和工具集成的代码。本书根据Python专家Mark Lutz的著名培训课程编写而成,是易于掌握和自学的Python教程。 本书每一章都对Python语言的关键内容做单独讲解,并且配有章后习题、编程练习及详尽的解答,还配有大量注释的示例以及图表,便于你学习新的技能并巩固加深自己的理解。第5版基于Python2.7和3.3版本,同时也适用于其他Python版本。无论你是编程新手还是其他编程语言的资深开发者,本书都会是你学习Python的理想选择。 本书主要内容: * 学习Python的主要内置对象类型,如数字、列表和字典。 * 使用Python语句创建和处理对象,并学习Python的通用语法模型。 * 使用函数减少代码冗余,使用包代码结构实现代码重用。 * 学习Python模块,从而封装语句、函数和其他工具,以便构建大型组件。 *
在本书中,你会看到用来处理文本、数据类型、算法、数学计算、文件系统、网络通信、Internet、XML、Email、加密、并发性、运行时和语言服务等各个方面的实用代码和解决方案。在内容安排上,每一节都会全面介绍一个模块,并提供一些很有价值的补充资源链接,这使得本书成为一本理想的Python标准库参考手册。
这是一本全面介绍Python面向对象编程的图书。本书共分为4部分。第1章至第6章深入讲解了面向对象编程的核心原则和概念,以及它们在Python中的实现方式。第7章至第9章仔细探讨了Python的数据结构、内置类和方法等,以及如何从面向对象编程的角度进行分析和应用。第10章至第12章探讨了设计模式及其在Python中的实现。第13章和第14章涵盖了测试和并发两个重要主题。整本书以一个机器学习分类算法的实现案例贯穿始终,并不断探讨各种实现方式的优劣。 这是一本全面介绍Python面向对象编程的图书。本书共分为4部分。第1章至第6章深入讲解了面向对象编程的核心原则和概念,以及它们在Python中的实现方式。第7章至第9章仔细探讨了Python的数据结构、内置类和方法等,以及如何从面向对象编程的角度进行分析和应用。第10章至第12章探讨了设计模式及其在Python中的实现。
本书详细地介绍了Python语言的一些高级功能以及常见数据类型的高级用法,非常适合有一定基础的读者深入学习Python编程。本书的主要内容包括常见内置类型(数值、字符串和集合等)的高级用法和潜在的陷阱,用于文本处理的格式化方法和正则表达式,用于数值计算和大规模数据处理的math包和numpy包等。此外,文件存储、随机数生成和图表绘制也是本书的重要内容。本书还开发了一个 RPN脚本解释器 项目,该项目贯穿本书的各个章节,通过对该项目的学习,你也可以开发出自己的 语言 。
nbsp nbsp《Python机器学习一本通》结合了Python和机器学习两个热门领域,通过易于理解的知识讲解,帮助读者学习和掌握机器学习。 全书共20章,分为5篇。其中第1篇为基础入门篇,主要讲述Python机器学习入门、设置机器学习的环境、机器学习基础和统计分析数学基础等内容;第2篇为数据预处理篇,主要讲述了产生和加载数据集、数据预处理等内容;第3篇为机器学习算法篇,主要讲述了回归分析、决策树分析、支持向量机、聚类分析、集成学*、*经网络学习、卷积网络学习和模型评价等内容;第4篇为机器学习应用篇,主要讲述了图像识别、语音识别、期刊新闻分类和图形压缩4个机器学习应用;第5篇为项目实战篇,主要讲述了社交好友分析、电商点击率预估等。 《Python机器学习一本通》适用于想了解传统机器学习算法的学生和从业者,想知道如何高效实现机器学习
本书是一本关于Python数据整理和数据质量的实用指南,主要介绍了如何使用Python进行数据清洗、转换和整合,以及如何确保数据的准确性和一致性。本书涵盖了数据整理基础、数据清洗、数据转换、数据整合、数据质量检查和数据可视化等内容。通过丰富的实例和代码示例,读者可以掌握Python数据整理和数据分析的相关技能。无论你是数据分析师、数据科学家还是其他领域的数据从业者,本书都不仅能够帮助你提高工作效率,还能够让你更好地理解和应用数据科学相关的知识和技能。
Python是一门开源的计算机编程语言,凭借其易学、灵活等特点,得到了越来越多人的认可和青睐。金融科技日新月异,金融行业的数字化、科技化和智慧化快速推进,Python在金融领域有着很好的应用现状和前景。 本书在上一版的基础上进行了内容升级,持续聚焦Python在金融分析与风险管理的应用,第2版从原先的12章扩充至15章,并依次划分为基础篇(共5章)、中阶篇(共5章)以及高阶篇(共5章),基础篇结合金融场景演示了Python语言以及NumPy、pandas、Matplotlib、SciPy以及statsmodel等金融领域常用的第三方模块的编程方法;中阶篇通过Python编程结合金融实例,依次探讨利率、汇率、债券、股票、互换合约、期货合约等产品的定价、风险测度以及风险管控等内容;高阶篇则融合Python与金融案例,探究了期权的定价、希腊字母、动态对冲、隐含波动率、交易策略及其他延
你的Python项目是否正在变得越来越庞大?随着代码的扩展,调试和维护工作变得更加艰难,你是否感到痛苦?Python是一种容易学习和使用的语言,但这也意味着系统可以迅速发展到无法理解的程度。值得庆幸的是,Python具有帮助开发者克服可维护性困境的功能。 在这本实用的书中,作者Patrick Viafore将告诉你如何限度地使用 Python的类型系统。你将看到用户定义的类型(如类和枚举),以及Python的类型提示系统。你还将学习如何使Python代码具有可扩展性,以及如何基于一个全面的测试策略构建安全网。利用这些知识和技术,你将编写更清晰、更易于维护的代码。 通过学习本书,你将: *了解为什么类型在现代开发生态系统中是必不可少的。 *了解类、字典和枚举等类型选择是如何反映特定意图的。 *在不加剧臃肿的情况下使Python代码在未来可扩展。 *使用流行的Python工
《Python学习手册(套装上下册 原书第5版)》: 《Python学习手册(套装上下册 原书第5版)》将帮助你使用Python编写出高质量、高效的并且易于与其他语言和工具集成的代码。 根据Python专家MarkLutz的著名培训课程编写而成,是易于掌握和自学的Python教程。 每一章都对Python语言的关键内容做单独讲解,并且配有章后习题、编程练习及详尽的解答,还配有大量注释的示例以及图表,便于你学习新的技能并巩固加深自己的理解。第5版基于Python2.7和3.3版本,同时也适用于其他Python版本。 无论你是编程新手还是其他编程语言的资深开发者,《Python学习手册(套装上下册 原书第5版)》都会是你学习Python的理想选择。 主要内容: 学习Python的主要内置对象类型,如数字、列表和字典。 使用Python语句创建和处理对象,并学习Python的通用语法模型
Python的Django框架是目前流行的一款重量级网站开发框架,具备简单易学、搭建快速、功能强大等特点。本书从简单的HTML、CSS、JavaScript开始介绍,再到Django的基础知识,融入了大量的代码案例、重点提示、图片展示,做到了手把手教授。本书基于Django 3.0.7版本、Python 3.8.5版本、Rest Framework 3.11.1版本、Vue.js 4.5.4版本、数据库MySQL 80版本进行讲解。本书还提供了一个商业级别的项目案例,采用目前主流的前后端分离开发技术,以便读者可以体验正式项目的开发过程。熟练掌握本书内容后,读者将达到中级Web项目开发工程师的技术水平。
9787115546081 Python编程 从入门到实践 第2版 89.00 9787115551870 Python编程快速上手 让繁琐工作自动化 第2版 89.00 9787115449764 Python极客项目编程 69.00 《Python编程 从入门到实践 第2版》 本书是针对所有层次Python读者而作的Python入门书。全书分两部分:*部分介绍用Python编程所必须了解的基本概念,包括强大的Python库和工具,以及列表、字典、if语句、类、文件与异常、代码测试等内容;第二部分将理论付诸实践,讲解如何开发三个项目,包括简单的2D游戏、利用数据生成交互式的信息图以及创建和定制简单的Web应用,并帮助读者解决常见编程问题和困惑。第2版进行了全面修订,简化了Python安装流程,新增了f字符串、get()方法等内容,并且在项目中使用了Plotly库以及新版本的Django和Bootstrap,等等。 《Python编程快速上手 让繁琐工作自动化 第2版》 本书是一本面向初学者的Python编程
本书提供了一种独特的方法来讲解Python编程入门,内容符合新的ACM/IEEECS和相关的计算课程倡议,以及由美国国家科学基金会赞助的数据科学本科课程。内容涵盖了新的主题和应用的覆盖面,模块化架构使教师能够方便地调整文本,适应课程需求。通过本书,你将学习: 538个案例研究,471道练习题和项目,557道自我测验题。基于IPython和Jupyter Notebook的即时反馈。问题求解、算法开发、控制语句、函数等基础知识。 列表、元组、字典、集合、Numpy数组、pandas Series和DataFrame。 2D/3D的静态、动态和交互式可视化。 字符串、文本文件、JSON序列化、CSV、异常。 过程式、函数式和面向对象的程序设计方法。 数据科学入门 :基础统计、模拟、动画、随机变量、数据整理、回归。 隐私、安全、伦理、可重现、透明。 AI、大数据和云数据科学案例研究:NLP、Twitter数据挖掘、IBM Wa
《 Python 编程从零基础到项目实战(微课视频版)》是一本介绍 Python 相关知识的 Python 基础教程,也是一本 Python 视频教程,内容涉及算法、 Python 数据分析、图形处理、 Web 开发、科学计算、项目管理、人工智能、 Python 爬虫等。其中第 Ⅰ 部分为 Python 基础篇,首先从 Python 的安装开始,随后介绍了变量和数据类型、条件分支与循环、列表与元组、字典、函数、类、标准库以及程序中的异常现象及处理方法;第 Ⅱ 部分为 Python 提高篇,介绍了文件处理、图形用户界面、数据库操作、线程与进程、测试及打包等知识;第 Ⅲ 部分为拓展篇,介绍了 Python 在 Web 应用、商业级别的技术框架、大数据应用、 AI 应用等方面的拓展知识。全书 通过 三酷猫 将案例 串联起来,由浅入深、生动有趣,在增加趣味性的同时,让读者对 Python 的具体使用有一个完整
《对比Excel,轻松学习Python数据分析》内容简介 集Python、Excel、数据分析为一体是本书的一大特色。 本书围绕整个数据分析的常规流程:熟悉工具 明确目的 获取数据 熟悉数据 处理数据 分析数据 得出结论 验证结论 展示结论进行Excel和Python的对比实现,告诉你每一个过程中都会用到什么,过程与过程之间有什么联系。本书既可以作为系统学习数据分析操作流程的说明书,也可以作为一本数据分析师案头的实操工具书。 本书通过对比Excel功能操作去学习Python的代码实现,而不是直接学习Python代码,大大降低了学习门槛,消除了读者对代码的恐惧心理。适合刚入行的数据分析师,也适合对Excel比较熟练的数据分析师,以及从事其他岗位想提高工作效率的职场人。 《对比Excel,轻松学习SQL数据分析》内容简介 全书分为3 篇:第1 篇主要介绍数据分析的基础知识,包