本书全面且深入地呈现了深度学习领域的知识体系,系统梳理了该领域的核心知识,阐述了深度学习的关键概念、基础理论及核心思想,剖析了当代深度学习架构与技术。全书共 20 章。本书首先介绍深度学习的发展历程、基本概念及其在诸多领域(如医疗诊断、图像合成等)产生的深远影响;继而深入探讨支撑深度学习的数学原理,包括概率、标准分布等;在网络模型方面,从单层网络逐步深入到多层网络、深度神经网络,详细讲解其结构、功能、优化方法及其在分类、回归等任务中的应用,同时涵盖卷积网络、Transformer 等前沿架构及其在计算机视觉、自然语言处理等领域的独特作用。本书还对正则化、采样、潜变量、生成对抗网络、自编码器、扩散模型等关键技术展开深入分析,阐释其原理、算法流程及实际应用场景。对于机器学习领域的新手,本书是全面且
《深度学习》内容介绍:《深度学习》由全球知名的三位专家Ian Goodfellow、Yoshua Bengio 和Aaron Courville撰写,是深度学习领域奠基性的经典教材。全书的内容包括3个部分:第 1部分介绍基本的数学工具和机器学习的概念,它们是深度学习的预备知识;第 2部分系统深入地讲解现今已成熟的深度学习方法和技术;第3部分讨论某些具有前瞻性的方向和想法,它们被公认为是深度学习未来的研究重点。 《深度学习》适合各类读者阅读,包括相关专业的大学生或研究生,以及不具有机器学习或统计背景、但是想要快速补充深度学习知识,以便在实际产品或平台中应用的软件工程师。 《动手学深度学习》内容简介:本书旨在向读者交付有关深度学习的交互式学习体验。书中不仅阐述深度学习的算法原理,还演示它们的实现和运行。与传统图书不同,本书的每一节都是一个可以
《神经网络与深度学习:案例与实践》是《神经网络与深度学习》(蒲公英书)的配套实践书,由复旦大学邱锡鹏教授和百度飞桨团队合作完成。本书在章节设计上和《神经网络与深度学习》一一对应,并以模型解读+案例实践的形式进行介绍。模型解读主要聚焦如何从零开始一步步实现深度学习中的各种模型和算法,并结合简单的任务来加深读者对模型和算法的理解;案例实践主要强调如何使用飞桨预定义API来更好地完成实际任务,会涉及一些数据预处理问题。建议读者将本书和《神经网络与深度学习》结合阅读,在动手实践中更深入地理解深度学习的模型和原理。
本书全面阐述了现代因果关系分析,展示了因果关系如何从一个模糊的概念发展成为一套数学理论,并广泛用于统计学、人工智能、经济学、哲学、认知科学、卫生科学和社会学等领域。本书提出了一个全面的因果关系理论,它统一了因果关系的概率、操作、反事实和结构方法,并提供了简单的数学工具来研究因果关系和统计关联之间的关系。本书通过融合领域知识、常识约束、文化传承的概念等来补充数据信息,为基于统计的机器学习中遇到的基本问题提供了科学的解决方案。
注意 作为一切思维活动的起点,一直是哲学、心理学和认知神经科学的重点研究对象。随着计算机技术的发展,人类对注意力机制的模拟和应用成为计算机科学领域的热点研究方向 让计算机能够具有类似人类的注意力机制,使其能够有效地应用于对数据的理解和分析。Transformer模型诞生后,注意力机制在人工智能各大重要领域的研究和应用更是如火如荼,成果丰硕。 《人工智能注意力机制:体系、模型与算法剖析》从注意力机制这一重要角度入手,阐述注意力机制的产生背景和发展历程,通过详实的理论剖析,以深入浅出的方式着重介绍注意力机制在计算机视觉、自然语言处理,以及多模态机器学习三大人工智能方向中的应用思路、模型与算法。 《人工智能注意力机制:体系、模型与算法剖析》以人工智能相关专业研究人员,特别是计算机视觉与自然语言处理
本书从基本概念和理论入手,通过近千张图和简单的例子由浅入深地讲解深度学习的相关知识,且不涉及复杂的数学内容。 本书分为上下两册。上册着重介绍深度学习的基础知识,旨在帮助读者建立扎实的知识储备,主要介绍随机性与基础统计学、训练与测试、过拟合与欠拟合、神经元、学习与推理、数据准备、分类器、集成算法、前馈网络、激活函数、反向传播等内容。下册介绍机器学习的 scikit-learn 库和深度学习的 Keras 库(这两种库均基于 Python 语言),以及卷积神经网络、循环神经网络、自编码器、强化学习、生成对抗网络等内容,还介绍了一些创造性应用,并给出了一些典型的数据集,以帮助读者更好地了解学习。 本书适合想要了解和使用深度学习的人阅读,也可作为深度学习教学培训领域的入门级参考用书。
本书介绍自然语言处理的一个应用 机器翻译及相关知识。全书分为三部分。部分包含第1~4章,简要介绍机器翻译中的问题、机器翻译技术的实际应用及历史,讨论一直困扰机器翻译领域的译文质量评价问题。第二部分包含第5~9章,解释神经网络、基本机器翻译模型的设计,以及训练和解码的核心算法。第三部分包含第10~17章,既涵盖构建新模型的关键内容,也涉及开放性的挑战问题和一些未解决问题的前沿研究。本书主要面向学习自然语言处理或机器翻译相关课程的本科生和研究生,以及相关研究领域的研究人员。
本书是《动手学深度学习》的重磅升级版本,选用PyTorch深度学习框架,旨在向读者交付更为便捷的有关深度学习的交互式学习体验。 本书重新修订《动手学深度学习》的所有内容,并针对技术的发展,新增注意力机制、预训练等内容。本书包含15章,部分介绍深度学习的基础知识和预备知识,并由线性模型引出基础的神经网络 多层感知机;第二部分阐述深度学习计算的关键组件、卷积神经网络、循环神经网络、注意力机制等大多数现代深度学习应用背后的基本工具;第三部分讨论深度学习中常用的优化算法和影响深度学习计算性能的重要因素,并分别列举深度学习在计算机视觉和自然语言处理中的重要应用。 本书同时覆盖深度学习的方法和实践,主要面向在校大学生、技术人员和研究人员。阅读本书需要读者了解基本的Python编程知识及预备知识中描述的线性代
本书全面、深入地探讨了人工智能(AI)领域的理论和实践,以统一的风格将当今流行的人工智能思想和术语融合到引起广泛关注的应用中,真正做到理论和实践相结合。全书分7个部分,共28章,理论部分介绍了人工智能研究的主要理论和方法并追溯了两千多年前的相关思想,内容主要包括逻辑、概率和连续数学,感知、推理、学习和行动,公平、信任、社会公益和安全;实践部分完美地践行了 现代 理念,实际应用选择当下热度较高的微电子设备、机器人行星探测器、拥有几十亿用户的在线服务、AlphaZero、人形机器人、自动驾驶、人工智能辅助医疗等。本书适合作为高等院校人工智能相关专业本科生和研究生的教材,也可以作为相关领域专业人员的参考书。
本书理论与实践相结合,系统阐述强化学习的基础知识,以及如何动手编写智能体以执行一系列实际任务。通过阅读本书,读者将获得深层Q网络、策略梯度方法、连续控制问题以及高度可扩展的非梯度方法等主题领域的可行洞见,还将学会如何构建一个经过强化学习训练、价格低廉的真实硬件机器人,并通过一步步代码优化在短短30分钟的训练后解决Pong环境。此外,本书还专门介绍了强化学习的新发展,包括离散优化(解决魔方问题)、多智能体方法、Microsoft的TextWorld环境、高级探索技术等。
本书介绍了经典人工智能(逻辑或演绎推理)和现代人工智能(归纳学习 经网络)之间的覆盖范围。分别阐述了三类方法: 演绎推理方法: 这些方法从预先定义的假设开始,并对其进行推理,以得出合乎逻辑的结论。底层方法包括搜索和基于逻辑的方法。这些方法在第 1 章到第 5 章中讨论。归纳学习方法:这些方法从例子开始,并使用统计方法来得出假设。示例包括回归建模、支持向量机、神经网络、强化学习、无监督学习和概率图形模型。这些方法在第 6 章到第 11 章中讨论。整合推理和学习:第 12 章和第 13 章讨论整合推理和学习的技术。例子包括知识图谱和神经符号人工智能的使用。
本书系统介绍了知识图谱的概念、发展历程、技术体系、前沿技术与应用实践。在基础知识方面,本书囊括了知识图谱从源数据到产生决策的全生命周期的各个环节,分析了数据图谱和知识图谱的核心区别,介绍了图谱构建和知识表示等相关关键技术。在前沿技术方面,全面介绍了知识图谱自动构建、知识图谱融合和智能推理等问题和挑战。在应用实践方面,结合营销智能国家新一代人工智能开放创新平台建设,介绍了知识图谱在信息检索、推荐系统、可视化、问答机器人等场景下的实际操作案例。
近年来,智能物联网、群体智能、工业互联网等新兴技术逐步兴起,人(智能手机、可穿戴设备等)、机(云设备、边缘设备)、物(具感知计算能力的物理实体)这三种基础要素正在走向协作和融合,迈向人机物融合群智计算时代,即通过人、机、物异构群智能体的有机融合,利用其感知能力的差异性、计算资源的互补性、节点间的协作性和竞争性,构建具有自组织、自学习、自适应、持续演化等能力的智能感知计算空间,实现智能体个体技能和群体认知能力的提升。 2020年,根据微软学术(Microsoft Academic)统计分析的关于群智感知(Crowd sensing)研究的作者排名(Top Authors)中,本书作者团队位列全球。本书作者带着十余年从事群智感知计算研究的思考,将传统的 以人为中心 的群智感知计算拓展深化为 人-机-物异构群智能体融合计算 (简称 人机物融合群智计
本书从人工智能(AI)的发展历史讲起,介绍了目前非常热门的深度学习加速芯片和基于神经形态计算的类脑芯片的相关算法、架构、电路等,并介绍了近年来产业界和学术界一些著名的AI芯片,包括生成对抗网络芯片和深度强化学习芯片等。本书着重介绍了用创新的思维来设计AI芯片的各种计算范式,以及下一代AI芯片的几种范例,包括量子启发的AI芯片、进一步提升智能程度的AI芯片、有机自进化AI芯片、光子AI芯片及自供电AI芯片等。本书也介绍了半导体芯片技术在后摩尔定律时代的发展趋势,以及基础理论(如量子场论、信息论等)在引领AI芯片创新方面发挥的巨大作用。*后,本书介绍了AI发展的三个层次、现阶段AI芯片与生物大脑的差距及未来的发展方向。 本书可供AI和芯片领域的研究人员、工程技术人员,科技、产业决策和管理人员,创投从业者和相关专业
本书对所有主要的深度学习方法和最新研究趋势进行了深入探索。全书分为上下两卷,五个部分。上卷包括两个部分:第一部分是基础算法,包括机器学习基础算法、早期神经网络算法、深度学习的正则化方法和深度学习的优化方法;第二部分是判别式模型,包括卷积神经网络(CNN)、循环神经网络(RNN)、长短期记忆模型(LSTM)、注意力机制和记忆网络。下卷包括三个部分:第三部分是生成式模型,包括深度置信网络/深度玻尔兹曼机、自编码器(AE)/变分自编码器(VAE)、生成对抗网络(GAN)、像素级生成、深度聚类等;第四部分是前沿技术,讨论深度强化学习;第五部分是安全保障,包括深度学习的可解释性和对抗样本的攻击与防御。本书特别注重学术前沿,对包括胶囊网络在内的当前最新成果进行了细致的讨论。全书构建了一套明晰的深度学习体系,同时
深度强化学习结合深度学习与强化学习算法各自的优势解决复杂的决策任务。得益于 DeepMind AlphaGo 和 OpenAI Five 成功的案例,深度强化学习受到大量的关注,相关技术广泛应用于不同的领域。本书分为三大部分,覆盖深度强化学习的全部内容。部分介绍深度学习和强化学习的入门知识、一些非常基础的深度强化学习算法及其实现细节,包括第 1~6 章。第二部分是一些精选的深度强化学习研究题目,这些内容对准备开展深度强化学习研究的读者非常有用,包括第 7~12 章。第三部分提供了丰富的应用案例,包括 AlphaZero、让机器人学习跑步等,包括第 13~17 章。本书是为计算机科学专业背景、希望从零开始学习深度强化学习并开展研究课题和实践项目的学生准备的。本书也适合没有很强的机器学习背景、但是希望快速学习深度强化学习并将其应用到具体产品中的软件工
本书对所有主要的深度学习方法和**研究趋势进行了深入探索。全书分为上下两卷,五个部分。上卷包括两个部分:第一部分是基础算法,包括机器学习基础算法、早期神经网络算法、深度学习的正则化方法和深度学习的优化方法;第二部分是判别式模型,包括卷积神经网络(CNN)、循环神经网络(RNN)、长短期记忆模型(LSTM)、注意力机制和记忆网络。下卷包括三个部分:第三部分是生成式模型,包括深度置信网络/深度玻尔兹曼机、自编码器(AE)/变分自编码器(VAE)、生成对抗网络(GAN)、像素级生成、深度聚类等;第四部分是前沿技术,讨论深度强化学习;第五部分是安全保障,包括深度学习的可解释性和对抗样本的攻击与防御。本书特别注重学术前沿,对包括胶囊网络在内的当前**成果进行了细致的讨论。全书构建了一套明晰的深度学习体系,同时各章内
《企业级AI技术内幕:深度学习框架开发 机器学习案例实战 Alluxio解密》分为盘古人工智能框架开发专题篇、机器学习案例实战篇、分布式内存管理Alluxio解密篇,分别对人工智能开发框架、机器学习案例及Alluxio系统进行透彻解析。 盘古人工智能框架开发专题篇,通过代码讲解多层次神经网络、前向传播算法、反向传播算法、损失度计算及可视化、自适应学习和特征归一化等内容。 机器学习案例实战篇,选取机器学习中*代表性的经典案例,透彻讲解机器学习数据预处理、简单线性回归、多元线性回归、多项式回归、支持向量回归、决策树回归、随机森林回归等回归算法,逻辑回归、k近邻算法、支持向量机、朴素贝叶斯、决策树分类、随机森林分类等分类算法、k均值聚类、层次聚类等聚类算法,以及关联分析算法,并对回归模型、分类模型进行性能评估。 分布式
《工业大数据分析算法实践》以工业大数据的特点和需求为牵引,阐述了工业大数据分析的算法与实现机制,使具有工科背景读者建立起数据思维,灵活利用数据分析算法进行实际问题的建模,并实现分析项目高效迭代与落地。具体主题覆盖了工业大数据分析工程思维和软件栈,工业数据的数据探索,预处理方法和常用机器学习算法,故障诊断、质量优化、流程优化的分析算法,专家规则驱动方法,以及工业数据分析工程等内容。 《工业大数据分析算法实践》分10章,可划分为四个部分。部分(第1章)是数据分析概览,目的是建立起数据分析算法的概念框架,并给出学习路线。第2~5章是第二部分,侧重在通用数据分析算法,包括数据预处理、机器学习、时序挖掘算法和*优化等其他算法。第三部分包括第6~8章,讨论了工业分析的算法思路,覆盖了生产质量分析(PQM
对从事人工智能算法研究与算法开发的人来说,模型的学习与使用必不可少。尤其是在目前如日中天的人工智能领域里,人人谈模型,模型也是层出不穷,让人眼花缭乱。本书将人工智能在现实生活场景中解决的问题分类,并根据这个分类来介绍各种人工智能模型。书中将人工智能问题分为权重问题、状态问题、序列问题、表示问题、相似问题和分类问题六大类,方便读者了解各个模型之间的关系,也方便读者理解各个模型的适用场景。本书不仅适合希望学习和运用人工智能模型到具体应用场景的企业工程师、科研院所的学生和科研人员,也适合对人工智能模型感兴趣的读者,使其将模型思维应用到生活中。
本书以HCIP-Security和HCIE-Security认证考试大纲为依托,介绍了防火墙和VPN的关键技术,包括安全策略、NAT、双机热备、虚拟系统、链路负载均衡、服务器负载均衡、L2TP VPN、IPSec VPN和SSL VPN。本书详细介绍了每一种技术的产生背景、技术实现原理、配置方法,旨在帮助读者掌握组建安全通信基础设施的技术和能力,顺利通过认证考试。 本书是学习和了解网络安全技术的实用指南,内容全面,通俗易懂,实用性强,适合网络规划工程师、网络技术支持工程师、网络管理员以及想了解网络安全技术的读者阅读。