本书是作者运用自己的独到的科学见解为全国普通高等学校本科生编写的 “高等代数”教材,内容包括:线性方程组的解法,行列式,数域K上的n维向量空间,矩阵的运算,一元多项式环和n元多项式环,线性空间,线性映射,双线性函数,二次型,具有度量的线性空间等。本书具以下有鲜明的特色:以研究线性空间及其线性映射为主线,科学地安排内容的讲授体系;用数学的思维方式编写教材,使学生既比较容易地学到“高等代数”的基础知识和基本方法,又受到数学思维方式的熏陶和训练,终身受益;编写体例新颖,每节均有“内容精华”“典型例题”“习题”三个栏目。
本书筛选了近年来的各地高考圆锥曲线试题,内容上注重题型归类和方法总结,以便师生直接利用和进一步研究解题方法,凸显了“知识问题化”“题目典型化”“方法通俗化”的特点,并且把一些基本的、有价值的题目进行了推广,寻求通性、通法。
本书详细地介绍了计算机中常用的数值计算方法,主要内容包括:误差分析、解非线性方程的数值方法、解线性方程组的直接方法、插值法、数值积分。本书每章末均附有丰富、实用的习题。
2019年是中华人民共和国成立70周年。70年来,中国教育学已经有了长足的发展。展望未来,新时代背景下中国教育学如何继往开来,接力发展,需要我们很好地去梳理已有的研究成果,准确定位中国教育学的发展历程和水平,明确未来的研究方向。该套丛书以国家重点课题 中华人民共和国教育学发展研究 为依托,集合全国教育学科各学科专业领军专家,作者队伍强大。从学理层面来看,教育学史越来越凸显其在教育学发展过程中的重要作用。对中国教育学史的研究,既是为了镜鉴现实,为了推动教育学术的传承和发展,又是为了推动我国教育学术的传承和发展以及为了保存和传播教育学发展的积淀。从读者需求方面来看,研究和学习教育学的人需要很好地了解本学科的发展史,明确自己研究的基础和学科定位。该丛书总共12卷本,每本书预计20万字,全套丛书预计2
本书以简短的篇幅叙述了线性泛函分析的基础理论。全书共分5章。按章序分别讲解度量空间和赋范空间的拓扑知识与结构性质、有界线性算子和有界线性泛函的基本定理、共轭空间与共轭算子、Hilbert空间的几何学以及线性算子的谱理论。本书注重阐述空间和算子的基本理论,取材既有简洁的一面又有深入的一面,并适当引入了自反空间、一致凸空间等较新的内容,在突出基本理论系统的同时,有选择地叙述了在其他学科分支的应用。
本书作为国家精品教材同济大学数学系《高等数学》的配套用书,书中精选了大量源自各高校的各种考试试题,具有集中要点,与教学同步;多级筛选,突出重点等特点。本书可作为本科院校学生学习高等数学课程的参考用书。
本书首先介绍MATLAB语言程序设计的基本内容,在此基础上系统介绍各个应用数学领域的问题求解,如基于MATLAB的微积分问题、线性代数问题的计算机求解、积分变换和复变函数问题、非线性方程与*化问题、常微分方程与偏微分方程问题、数据插值与函数逼近问题、概率论与数理统计问题的解析解和数值解法等;还介绍了较新的非传统方法,如模糊逻辑与模糊推理、神经网络、遗传算法、小波分析、粗糙集及分数阶微积分学等领域。本书可作为一般读者学习和掌握MATLAB语言的教科书,高等学校理工科各类专业的本科生和研究生学习计算机数学语言的教材或参考书,可供科技工作者、教师学习和应用MATLAB语言解决实际数学问题时参考,还可作为读者查询某数学问题求解方法的手册。
本书主要讲述工程及物理中常用的数学方法,全书共分6章:第l章主要围绕广义函数介绍线性泛函分析的最基础的内容;第2章介绍积分变换中最重要的两种变换:Fourier变换与Laplace变换;第3章介绍二阶常微分方程的幂级数解,对常点和正则奇点附近的幂级数解的结构进行了详细的讨论,并介绍了涉及的几种重要的特殊多项式;第4章介绍稳态问题的解析方法;第5章介绍演化方程的解析方法,它们是热传导方程与波动方程的初值及初边值问题的解法;第6章介绍曲线坐标系中的分离变量法,这里只考虑球坐标系与柱坐标系中的分离变量法。全书突出广义函数在数学物理问题求解中的作用,并从微分流形的概念出发,对曲线坐标系中的微分算子给出了严格的推导,自成一休。
高等数学是大学理工科及经济管理类专业的重要基础课,是培养学生形象思维、抽象思维、创造性思维的重要园地。 本书从浩瀚的题海中归纳、总结出的题型解法,对同学们解题具有很大的指导作用.书中的经典问题解析对教材的重点、难点进行了诠释,对同学们掌握这方面知识起到了事半功倍的效果。 本书是针对考研、参加数学竞赛的同学撰写的,对在读的本科生、专科生及数学教师同仁也具有很高的参考价值。
《高等数学解题全攻略(下卷)》从浩瀚的题海中归纳、总结出的题型解法,对同学们解题具有很大的指导作用。书中的经典问题解析对教材的重点、难点进行了诠释,对同学们掌握这方面知识起到事半功倍的效果。《高等数学解题全攻略(下卷)》是针对考研、参加数学竞赛的同学撰写的,对在读的本科生、专科生及数学教师同仁也具有很高的参考价值。
本教材适用于各理工学科中非数学专业的高等数学课程.由于高等数学基本理论、基本方法和基本技能,特别是微积分的基本理论和方法在各理工类等学科中具有广泛的应用,所以本教材进一步完善了微积分方面的基本理论和方法.同时,因傅里叶级数在理工类学科中具有广泛的应用背景,所以本教材把傅里叶级数单独作为一章,其目的是强调傅里叶级数的重要性.本教材的特点是每一章节都列举了大量的例子,题型多样化,除了有利于学生掌握知识外,还有利于学生思维能力的培养;每一节附有习题,每一章附有总复习题.《BR》本教材共十二章,分上、下两册.上册内容:函数的极限与连续,导数与微分,微分中值定理与导数的应用,不定积分,定积分及其应用,向量代数与空间解析几何;下册内容:多元函数微分法及其应用,重积分及其应用,曲线积分与曲面积分,
曾令淮、段辉明、李玲编著的这本《高等代数与 解析几何》涵盖现行理工科所用的高等代数教材内容 以及空间解析几何的基础知识,内容包含三部分:空 间解析几何、多项式、线性代数,具体分为行列式、 几何空间、矩阵、线性方程组、矩阵的特征值与特征 向量、二次型、一元多项式、线性空间、线性变换、 欧几里得空间共10章内容。 本书适合于工科院校数学类各专业,而且前6章 内容还适合理工科院校非数学类不开设高等数学而开 设工科数学分析的专业讲授,后4章内容也可以作为 这些专业学生的考研参考。
本书参照*高等学校数学与统计学教学指导委员会制定的《工科类本科数学基础课程教学基本要求》编写而成。全书分上、下两册。上册包括函数、极限与连续,导数与微分,中值定理与导数的应用,不定积分,定积分,定积分的应用,常微分方程等内容,书末还附有基本初等函数和双曲函数、极坐标简介、几种常见的曲线、积分表以及习题参考答案。本书配有适当的习题,每章总习题分为A,B两组,A组题以基本概念与基本方法为主,是学生必须掌握的;B组题有一定的难度,具有综合性、论证性强等特点,以适应日益增多的考研学生的需求,也便于教师使用。 本书主要针对应用型本科学生编写,注意强化基本概念、基本理论、基本计算,注重应用数学知识解决实际问题的能力的培养,注重数学思想方法的培养和数学思维的培训,注重自学能力的培养和提高。
在保持与第三版内容体系和写作风格一致的前提下,本版遵循“坚持改革,与时俱进”的原则,对上一版中个别概念定义的叙述、定理的证明做了修改,对全书的文字表达进行细致推敲,对例题与习题进行了合理的增删。同时,本次修订充分利用二维码和APP应用技术,为读者提供微课视频、习题讲解视频、高等数学学习方法、每章学习指导、阶段性测试题、考研真题、数学家小故事等新形态资源,力求使教材更加完善,适应时代要求,便于教和学。《BR》全书内容包括:函数与极限、导数与微分、微分中值定理与导数的应用、不定积分、定积分及其应用、多元函数微积分、微分方程与差分方程、无穷级数、高等数学实验。每节有习题,每章有总习题,书末附部分习题答案与提示。教材编写力图解决与中学数学的衔接问题,注重高等数学的应用,尤其是经济方面的应
《高等数学学习指导(下册)》是根据三峡大学2012年在我社出版的普通高等教育"十二五"规划教材《高等数学》(上下册)配套编写而成的。分为上、下两册。上册包括函数与极限、一元函数微分学、一元函数积分学和微分方程,下册包括空间解析几何与向量代数、多元函数微分学、多元函数积分学和无穷级数。《高等数学学习指导(下册)》的内容按章编写,与教材同步。每章包括教学基本要求、内容概述、典型例题、习题选解及自测题五个部分。
本书着眼素质教育,注重数学内容、思维之间内在的联系,条理、结构、脉络清晰,能培养学生数学思维能力,便于教学与学习。在教材内容选取和讲述上,本着从简单到复杂、从特殊到一般的原则,力求深入浅出,“预、补结合”,难易结合,易教易学,主要内容包括:函数、极限、连续函数、导数与微分、微分中值定理与导数的应用、不定积分、定积分以及定积分的应用。为了增加可读性与趣味性,同时还增加了一些数学思想方法简介和数学家简介,兼顾各个层次民族预科学生学习状况,还分层次提供多种程度的习题。
本书根据“农林院校大学数学——微积分教学基本要求”,结合作者多年教学经验,根据农科专业的特点,按照继承、发展与改革的精神编写而成,是集体智慧的结晶。本书共分9章,包括函数、极限与连续;导数与微分;小值定理与导数的应用;不定积分;定积分及其应用;多元函数微分学;二重积分;无穷级数;微分方程与差分方程。本书的特点是:突出应用背景,侧重微积分在农林科技中的应用,并从实际例子出发,引出微积分的一些基本概念、基本理论和方法;内容由简到难逐步展开,结构严谨,例题丰富,通俗易懂,难点分散;注重数学思想与数学文化的渗透。本书的编写参考了近年来全国硕士研究生入学统一考试数学考试大纲,内容上有所兼顾。本书可供农林类高等院校农科专业学生使用,并可作为相关专业师生的教学参考书。
本书是与主教材《高等数学教程》(上、下册)配套的教学辅导书,致力于化解数学的难点和突出重点,并把这一原则贯彻到全书。书中精选例题587道,练习题1016道,是学习高等数学必要的工具书。本书的主要特点是,其内容在章节上与主教材同步,并在每一章设有“本章主要内容及教学要求”,以阐明教学基本要求、重点、难点、深度和广度及要点提示;本书还充分体现了主教材的特色和优势,如用无穷小的比较定理和极限的语言两种方法来证明相关极限。通过比较,读者可以很清楚地看到前一种方法的优势,本书与主教材配合,在第二型曲面积分计算上体现出了较其他同类教材或习题集更具简单、清晰的优势;本书还单独地分出两章来介绍综合性的例题,其中一章为一元微积分的综合例题,另一章为整个微积分的综合例题。 本书可作为高等院校理工
古算诗词题是我国珍贵的文化遗产。我国古算家文理兼优,把博大精深的古算名题和算法推理编成耐人寻味、朗朗上口的诗词或歌谣,使抽象难懂的数学题形象生动、易于理解和记诵,同时激发人们学习数学的兴趣。本书精选出古代数学中的约200首中外诗词题进行注释,译为白话文,并且重点给出古今240多种不同解法,有的还补充出原著省略的算理。本书按主要解题的方法为序编排诗词题,方便读者查阅、使用。
本书是在高等教育大众化的新形势下,根据编者多年的教学实践,并结合工科院校《高等数学课程教学基本要求》而编写的,全书分上、下两册,上册内容包括函数、极限与连续、一元函数微分学、一元函数积分学及微分方程,下册内容包括空间解析几何与向量代数、多元函数微分学、多元函数积分学、无穷级数,每节之后配有习题,每章后配有自测题,书后附有部分习题答案与提示、几种常用的曲线,全书力求结构严谨,逻辑清晰,通俗易懂。 本书可供高等院校工科各专业学生使用,也可供广大教师、工程技术人员参考。
《高等数学竞赛题解析教程(2014本科适用)》(作者陈仲)根据江苏省普通高等学校非理科专业高等数学竞赛委员会制订的高等数学竞赛大纲并参照*制订的考研数学考试大纲编写而成,内容分为极限与连续、一元函数微分学、一元函数积分学、多元函数微分学、多元函数积分学、空间解析几何、级数、微分方程等八个专题,每个专题含“基本概念与内容提要”、“竞赛题与精选题解析”与“练习题”三个部分。其中,竞赛题选自江苏省(1-11届)、北京市(1-15届)、浙江省(1-10届)、广东省、陕西省、上海市、天津市等省市大学生高等数学竞赛试题;清华大学、南京大学、上海交通大学等高校大学数学竞赛试题;莫斯科大学等国外高校大学生数学竞赛试题。 高等数学竞赛能激发大学生们学习高等数学的兴趣,活跃思维。高等数学竞赛试题中既含基本题,又含很多具有