《泛函分析》为普林斯顿分析译丛中的第四册泛函分析,其内容分为8章,第1章介绍Lp空间和Banach空间,第2章过渡到调和分析中的Lp空间,第3章讨论分布:广义函数,第4章讲述Baire纲定理的应用,第5章为概率论基础,第6章介绍Brownian运动,第7章为多复变引论,第8章介绍Fourier分析中的振荡积分,全书展现了泛函分析理论的基本思想,特别强调它与调和分析的联系。 《泛函分析》可作为数学专业高年级本科生或研究生的泛函分析教材,同时也可作为相关科研工作者的参考书。
本书由三部分内容组成。第一部分是测度论基础(第1~3章)。主要介绍测度的扩张定理和分解定理,Lebesgue-Stieltjes测度、可测函数及其积分的基本性质,还有乘积可测空间和Fubini定理等。第二部分是第4~6章。主要介绍独立随机变量序列的极限定理,包括中心极限定理、级数收敛定理、大数定律和重对数律。在介绍中心极限定理之前,介绍了测度的弱收敛、特征函数以及相关结论。这部分内容突出了经典的概率论证明技巧。第三部分为第7、8章,介绍一些特殊的随机过程。第7章介绍离散鞅论,第8章简单介绍了马氏链、布朗运动和高斯自由场。
本书共分6章,主要涉及分数阶偏微分方程的理论分析以及数值计算。第1章着重介绍分数阶导数的由来以及一些分数阶偏微分方程的物理背景;第2章介绍Riemann-Liouville等分数阶导数以及分数阶Sobolev空间、交换子估计等常用的工具;第3章从理论的角度讨论一些重要的偏微分方程;从第4章开始重点讨论分数阶偏微分方程的数值计算,介绍了有限差分法、级数逼近法(主要是Adomian分解和变分迭代法)、有限元法以及谱方法、无网格法等计算方法。本书涵盖了该领域的一些前沿结果以及作者目前的一些研究结果。
本书筛选了近年来的各地高考圆锥曲线试题,内容上注重题型归类和方法总结,以便师生直接利用和进一步研究解题方法,凸显了“知识问题化”“题目典型化”“方法通俗化”的特点,并且把一些基本的、有价值的题目进行了推广,寻求通性、通法。
本书系统地介绍分数阶微积分学与分数阶控制领域的理论知识与数值计算方法。特别地,作者提出并实现一整套高精度的分数阶微积分学的数值计算方法;提出线性、非线性分数阶微分方程的通用数值解法和基于框图的通用仿真框架,为解决分数阶控制系统的仿真问题奠定了基础;开发面向对象的分数阶系统控制的MATLAB工具箱,可以用于多变量分数阶系统的建模、分析与控制器设计的全过程。本书所有知识点均配有高质量的MATLAB代码,有助于读者更好地理解知识点的内涵,更重要地,可以利用代码实践并创造性地解决相关问题。
本书是作者根据多年从事高等代数与解析几何课程教学的经验编写而成的。本书分上、下两册。上册主要包括:空间向量、平面与直线、矩阵初步与n阶行列式、矩阵的秩与线性方程组、多项式、矩阵的相似与若尔当标准形;下册主要包括:常用曲面、二次型与矩阵的合同、线性空间、线性变换、欧氏空间。本书在编写中将二次型及其矩阵的特征值这一历史上的经典问题作为引入整个课程内容的一条叙述主线,将高等代数与解析几何有机地结合起来。本书合理地引入了每一个重要概念,给出了主要定理的推理步骤,设置了不少经典例题和习题来指导学生理解和运用这些定理。
2019年是中华人民共和国成立70周年。70年来,中国教育学已经有了长足的发展。展望未来,新时代背景下中国教育学如何继往开来,接力发展,需要我们很好地去梳理已有的研究成果,准确定位中国教育学的发展历程和水平,明确未来的研究方向。该套丛书以国家重点课题 中华人民共和国教育学发展研究 为依托,集合全国教育学科各学科专业领军专家,作者队伍强大。从学理层面来看,教育学史越来越凸显其在教育学发展过程中的重要作用。对中国教育学史的研究,既是为了镜鉴现实,为了推动教育学术的传承和发展,又是为了推动我国教育学术的传承和发展以及为了保存和传播教育学发展的积淀。从读者需求方面来看,研究和学习教育学的人需要很好地了解本学科的发展史,明确自己研究的基础和学科定位。该丛书总共12卷本,每本书预计20万字,全套丛书预计2
2019年是中华人民共和国成立70周年。70年来,中国教育学已经有了长足的发展。展望未来,新时代背景下中国教育学如何继往开来,接力发展,需要我们很好地去梳理已有的研究成果,准确定位中国教育学的发展历程和水平,明确未来的研究方向。该套丛书以国家重点课题 中华人民共和国教育学发展研究 为依托,集合全国教育学科各学科专业领军专家,作者队伍强大。从学理层面来看,教育学史越来越凸显其在教育学发展过程中的重要作用。对中国教育学史的研究,既是为了镜鉴现实,为了推动教育学术的传承和发展,又是为了推动我国教育学术的传承和发展以及为了保存和传播教育学发展的积淀。从读者需求方面来看,研究和学习教育学的人需要很好地了解本学科的发展史,明确自己研究的基础和学科定位。该丛书总共12卷本,每本书预计20万字,全套丛书预计2
本书主要介绍高等数学中300道经典习题的一题多解,这是作者在30多年教学过程中的积累和总结。书中的习题及其解法部分选自高等数学及数学分析类参考文献、国内外大学数学竞赛试题和研究生入学考试试题及其解答,部分源于作者多年的教学研究成果,其中有不少是作者编制的新题和给出的新颖解法,解法丰富多彩。每道习题均包括典型例题、特别提示及类题训练三个环节,供读者拓展解题思路、思考和练习之用,以加深对相关解题方法的理解和运用。全书例题与同类训练题总和达1500多道。习题的典型性与广泛性、解法的多样性与新颖性、解法的普适性与拓展性、类题的针对性及习题的海量性是本书的主要特色。
本书是大学数学学习指导系列之一,包含了线性代数与空间解析几何中的主要内容。全书共分十一章,它们是行列式、矩阵、n维向量空间、线性方程组、空间解析几何、矩阵的特征值与特征向量、二次型、一元多项式、线性空间、线性变换和欧几里得空间等。本书精选了将近400道例题和400道练习题,选材注重突出课程的基本要求,力求做到解题简明,思路清晰,由易到难,从基本到综合,循序渐进。本书编写体例有内容精讲、典型例题、练习和提示与答案四部分。概述了每一章节的基本概念、基本定理和基本方法。在某些难以理解或容易出错的地方特别作出解释,指出各概念之间的联系。在大部分例题中,都有思路分析、解题过程、小结以及注解等,有的题还提供了每一节后面都安排了适量的习题,读者可以通过练习进一步巩固所学到的知识,掌握各种题型的解
在这本引人入胜的科普经典中,著名英国数学家斯图尔特用清晰流畅、幽默风趣的语言阐明了群、集合、子集、拓扑、布尔代数等“新数学”的基本概念,他认为理解这些概念是把握数学真正本质的很好途径。此外,作者还对函数、对称、公理学、计数、拓扑学、超空间、线性代数、实分析、概率论、计算机、现代数学的应用等主题作了发人深省的讨论。读者无需任何高等数学背景,只需对代数、几何和三角学略知一二,便可读懂本书的大部分内容。读罢此书,你会更清楚地理解现代数学家对图形、函数和公式的看法,以及“新数学”的基本思想如何有助于领会数学的本质。
本书根据高等学校本科理工类专业高等数学课程教学大纲及考研大纲而编写。内容包括函数与极限、一元微分学、一元积分学、多元微分学、多元积分学、无穷级数、微分方程等知识。书中融入了数学历史、数学文化的教育,教学例题配备注意了学习难度的循序渐进,选编了题型较为丰富的习题。附录中编入了与本书配套的数学实验指导书。书后配有内容丰富、功能强大的高等数学多媒体学习系统(光盘),其内容涵盖了课堂教学、习题解答、实验教学、综合训练等模块。教学过程中与本书配合使用、形成教与学的有机结合。本书可作为高等学校理工类专业的高等数学教材。 与书配套建设的《高等数学多媒体教学系统》(光盘)随教材配送给教师。
内容简介: 本书分高等数学基础篇和高等数学提高篇两册 , 基础篇主要包括高等数学基础知识点的讲解和相应的练习题 , 起到温故知新的作用 ; 提高篇主要包括对高等数学综合性试题的分析和解答 , 注重数学抽象思维的呈现 , 以提高学生综合分析和解决问题的能力为目的 。
高等数学(理工类)(第三版)
《高等代数辅导与习题解答 北大·第5版》 本书是与北京大学数学系编写的教材《高等代数(第五版)》配套的学习辅导书,是由教材作者亲自编写的。本书与教材的编排顺序一致,分为十章。每章中有内容提要、学习指导、习题与补充题的提示与解答,最后是总习题解答。本书的目的是帮助读者更好地学好教材的内容,要求读者切实按前言中提出的学习步骤和要求来学习,从而提高学习效果和解题能力,而不要把本书仅作为习题解答来使用。此外,学习指导部分加入了一些抽象概念(如线性相关、线性无关、向量组的秩等)的数学背景和来源等精彩内容,这在一般书中是少见的。本书适合高等学校数学类专业作为高等代数课程的参考书,也可供广大读者学习时参考。 《高等代数 第5版》 本书是第五版,基本上保持了第四版的内容,增加了几个应用例题,改写了
本书在版的基础上进行修订再版,全书共9章,内容可分为Boole代数理论,命题演算与谓词演算理论,归结原理理论,多值逻辑的*理论等4部分。同时,在版的基础上对“计量逻辑学”,关于一阶系统K完备性的证明等诸多内容做了补充或改写。 本书可供计算机专业、应用数学专业、人工智能专业的研究生与高年级本科生及教师阅读。
本书是在第三版的基础上修改而成的。作者根据大量的教学信息反馈和更加深刻的教学体会,对原书作了大量的修改,并增删了部分内容,其目的是使本书更适用于大学数学基础课的实际教学过程,符合实际需要,并且使教学内容更易于学生理解和接受。本书的主要特色是以现代数学的观点审视经典的内容,科学组织并简洁处理相对成熟的素材,对分析、代数、几何等方面作了统一的综合处理,揭示数学的本质、联系和发展规律;注重数学概念的实际背景和几何直观的引入,强调数学建模的思想和方法;在适度运用严格数学语言的同时,注意论述方式的自然朴素,以便读者易于理解;配有丰富的图示、多样的例题和习题,便于学生理解和训练。 全书分上、下两册。上册包括一元微积分、线性代数、空间解析几何;下册包括多元微积分、级数、常微分方程、概率论
数学无穷与中介的逻辑基础是一部研究型的原创著作,全书分6章和1个附录。第1、2两章讨论经典与非经典数学的基础问题,其核心主题是介绍中介数学。第3章严格定义了潜无限、实无限和基础无限,并研讨了无穷集合的相容性问题。第4章建立了潜无限数学系统。第5章讲述如何改造传统造集观念。第6章和附录给出了古今数学物理危机中相关一流问题的解决方案。 数学无穷与中介的逻辑基础虽为学术专著,但也可作高等院校数学、计算机专业的研究生及重点院校高年级本科生的基础理论课程教材使用,也可供相关专业的师生,特别是逻辑学专业的师生研读。
上海大学自强学院由钱伟长校长创办、学校直接领导,是培养优秀学生的特色学院本书是根据作者执教上海大学自强学院“高等数学”课程13年总结写成的教材,2008年度上海大学重点教材建设项目。其特点,一是在高等数学的基本框架下加进了数学分析的一些基本内容,为学生今后学习打下一个基础;二是注重概念和方法的小结;三是例题分析紧扣解题方法,习题编排和解答便于学生自学。 由顾传青编著的《高等数学》分为上、下两册。上册内容为函数与极限、导数与微分、微分中值定理及其应用、不定积分、定积分、定积分的应用和空间解析几何与向量代数共7章。 《高等数学》适合作工科本科生和非数学专业理科本科生的“高等数学”课程教材,也可作为准备考研人员和工程技术人员的参考书。