《高等代数习题精选精解》由张天德、吕洪波主编,本书涵盖了高等代数的知识要点,典型习题,考研真题以及难度稍大的综合习题,汇集了高等代数的基本解题思路,方法和技巧,融入了编者多年讲授高等代数的经验和体会。相信本书会成为读者学习高等代数的良师益友。
《走向代数表示论:刘绍学文集》包括了非结合代数、无限代数的分解、关于一种有限非结合代数、关于多元算子群中的直因子、几类非结合环的局部幂零性和Levitzki根、每一子代数都是理想的代数(英文)、代数族上的wedderburn定理(英文)……等等。
本书介绍了作者近年来在解析不等式研究方面取得的成果,包括几何凸函数基本性质、对数凸函数和GA凸函数的积分不等式、最值压缩定理、最值单调定理及它们的应用,统一证明了一些不等式,加强或推广了一些已知不等式,新建了一批有价值的解析不等式。全书包含了上百个不等式的证明,是不等式研究方面的一本较好的入门书和参考书。本书可供数学研究人员、大学数学系师生、中学数学教师及数学爱好者阅读。
随着计算机技术的发展,线性代数课程的重要性越来越突出。同时,现代软件已经为显著改进授课方式提供了可能。本书作者多年讲授线性代数课程,并在教学过程中不断探索更利于学生理解的新教学方法,从而使本书更加适合作为线性代数课程的教材。在第8版中,扩充了矩阵代数的知识,新增了向量积、实舒尔分解的内容,并增加了130多道新练习。本书主要特点?理论与应用有机结合。大量的实际应用贯穿于理论讲解的始终,体现了线性代数在各个领域中的广泛应用。?示例丰富。便于读者理解相关的定义及原理,增强了读者学习的兴趣。?习题安排错落有致。每一节的后面给出大量的习题,各章后面还有测试题,使学生有更多的演练机会,达到触类旁通的效果。?紧密结合数学工具MATLAB。每章的后面都有基于MATLAB的上机练习,并在附录中介绍了MATLAB的基本用法。
本书由代数学家与代数几何学家Michael Artin所著,是作者在代数领域数十年的智慧和经验的结晶。书中既介绍了矩阵运算、群、向量空间、线性变换、对称等较为基本的内容,又介绍了环、模型、域、伽罗瓦理论等较为高深的内容,本书对于提高数学理解能力、增强对代数的兴趣是非常有益处的。此外,本书的可阅读性强,书中的习题也很有针对性,能让读者很快地掌握分析和思考的方法。
抽象代数I是南开大学数学专业的必修课,抽象代数Ⅱ是该专业本科生的选修课和研究生的必修课,结合代数是应用非常广泛的一种代数结构,将这些内容作为该课程的内容是非常合适的。《抽象代数II:结合代数》是作者在长期教授该课程的基础上编写而成,内容包括结合代数,张量积、张量代数,二次型、Clifford代数,群代数及其表示,某些非结合代数。《抽象代数II:结合代数》力求深入浅出,循序渐进,特别注意与其他课程的联系,以使读者体会到“抽象代数是制造机器的机器”这一著名论述,更能体会到“玄之又玄,众妙之门”这样的哲理。《抽象代数II:结合代数》可作为高等院校数学专业本科及理工科非代数方向研究生“抽象代数”课程的教材,也可供相关科技人员及大专院校师生自学参考。
陈建明、曾明、刘国荣编著的《离散数学(第3版)》系统地介绍了各种离散的数学结构,其中包括数理逻辑、集合论、代数系统和图论的基本内容。本书以证明方法和证明过程为重点,以关系的理念贯穿全书。在编写过程中力求内容精练、重点突出、深入浅出,有助于读者自我学习。书中内容可满足计算机专业后继课程的需要。 《离散数学(第3版)》可作为计算机软件专业、计算机通信专业、计算机制造专业和各类相关信息专业的本科生“离散数学”课程的教科书及教学参考书,同时也可供有关考研人员和自考人员学习和参考。
本书自1992年9月出版以来,已发行24000册,深受教师和学生的欢迎。在第二版中,本书作者根据10年来读者和本书编辑提出的宝贵意见,以及在教学实践中的体会,对本书内容做了进一步修改与完善(见第二版说明),使之更适宜于教学需要。 本书是大学初等数论课教材。全书共分九章。内容包括:整除,不定方程,同余,同余方程,指数与原根,连分数,素数分布的初等结果,数论函数等。书中配有较多的习题,书末附有提示与解答。本书积累了作者数十年教学与科研的经验,遵循少而精的原则,精心选材。为便于学生理想,对重点内容多侧面分析,从不同角度进行阐述。 本书概念叙述清楚,推理严谨,层次分明,重点突出,例题丰富,具有选择面宽,适用范围广,适宜自学等特点。 本书可作为综合大学数学系、应用数学系、计算机系以及中