本书沿着一条简捷的途径,着重地介绍了代数K-理论在拓扑学、几何学、数论和算子代数中有重要应用的K0群、K1群及K2群的基本理论,K0群的三种等价定义,K1群和K2群的同调刻画,以及它们之间的正合列等,可将读者带到这一学科的前沿。同时还介绍了类数计算及K2群计算方面的一些基本结果及近十年来外学者得到一些新成果。全书自成体系,学过线性代数和近世代数的读者都可阅读。本书可作为数学系高年级学生及研究生的,也可供高校数学教师及数学研究人员阅读和参考。
Rota-Baxter代数由一个结合代数和一个线性算子组成,该算子满足微积分的分部积分公式中的等式。Rota-Baxter代数20世纪60年代起源于理论。本世纪以来,Rota-Baxter代数不仅在理论法方面得到了突飞猛进的发展,并且在数学物理、数论、组合等方面得到了广泛的应用。尽管过去的几十年有很多有关于Rota-Baxter代数的文章,但是还缺乏一本系统介绍Rota-Baxter代数的专著。《Rota-Baxter代数导论(英文版)》就是本介绍该领域的著作,通过大量的例子以及各种应用之间的联系,详细介绍了Rota-Baxter代数,包括它的三个重要方面。 本书可作为代数、组合、数论和数学物理领域的研究生教材或参考书,也可供相关的研究人员参考。 作者郭锂为美国Rutgers大学教授,是Rota-Baxter代数及相关结构近年来进展的主要贡献者之一。郭锂教授在Noticesof the American Mathematical Society发表的文章W
本书是利用作者A.б.瓦西里耶娃在20世纪60年代提出的“边界层函数法”,对奇异地依赖于小参数的常微分方程组、积分一微分方程组和时滞微分方程组等各种非线性系统定解问题进行近似求解和渐近分析的专著。其特点是系统地论述该方法的理论基础和运用该方法对各种问题的渐近解进行构造的过程,而且对定理、命题和结果都给出详细的推导和论证,是一本关于这类非线性微分方程组奇异摄动问题的基本理论著作。 本书适合于从事渐近方法的研究生、大学生、应用数学工作者以及需要处理各种非线性奇异摄动方程组数学模型的科技工作者,对于需要求解非线性方程组的物理、力学和工程技术人员也是一本有用的参考书。
《三角级数论》以现代的观点简明而完整地讲述傅里叶级数的基础理论,全书共分7章。章讲述预备性知识;第2,3章讲傅里叶级数的性质;第4章讲傅里叶级数的收敛性及其判别法;第5章、第6章讲傅里叶级数的求和法及其应用;一章讲一般的三角级数。另有一个附录。对全书主要内容的来源作了一个综述。