素数论这一古老的数学分支,包含着许多诸如哥德巴赫问题那样的有趣而又艰深的难题。为了解决这些问题,素数论既借助也带动了其他数学分支的发展,因而素数论迄今仍是一个活跃的领域。 本书旨在介绍素数论的主要内容,书中谈到了许多的数论问题和猜想,简介了解决这些问题的方法和近代成果。介绍了我国数学家在这个领域里的重要贡献。本书的前一半只用到了中学的数学知识,而具备一些数学分析的知识后就可以读完后一半。全书写法简捷,深入浅出,可供中学生和广大数学爱好者阅读。
李继根等编的《矩阵分析与计算》是基于编著者多年从事矩阵分析类课程的教学改革实践经验,并结合学生的实际情况编写而成的,可作为高等院校理工科各专业研究生和工程硕士学习矩阵分析等相关课程的教材,也非常适合理工科高年级本科生学完线性代数课程后进一步学习之用。全书分为线性方程组、线性空间与线性变换、内积空间、特殊变换及其矩阵、范数及其应用、矩阵分析及其应用、特征值问题七章。该教材既注意系统性,又注重体现工科特色,深广度适中,并适当略去了一些定理的证明。书中注重启发式教学,采用多种方式自然地引入基本概念和基本方法。同时,行文时非常注重几何直观及与类比,力争做到深入浅出、简洁易懂,以便于自学。书中还穿插了许多矩阵计算知识,并附有大量matlab代码,以渗透科学计算思维。此外,书中加入的大量数学史
本书概要介绍半个世纪以来由数字通信的可靠性要求所建立和不断发展的纠错码数学理论。书中不涉及纠错技术和工程具体实现问题,但也介绍了一些纠错译码算法。 本书适用于代数专业的研究生和具有较好代数基础的高年级本科生。书中所讲述的知识和方法对于研究信息科学与计算机科学中许多其他问题也会有所帮助。
本书系统介绍有关数学难题——哥德巴赫猜想的研究成果,特别是我国数学家的重大贡献,同时介绍研究这一问题的一些重要方法。
本书是Springer《数学研究生教材》第73卷,初版于1974年,30年来一直是美国及世界各国大学数学系采用的研究生代数教本。此书Springer已重印12次,由此证明这是一部经典的研究生教材。全书取材适中,论述清晰,自成系统.本书在一些问题的处理上有其独到之处,如Sylow定理的证明、伽罗瓦理论的处理、可分域的扩张、环的结构理论等。书中有大量的练习和精心挑选的例子。 目次:群和群的结构;环;模;域和伽罗瓦理论;域的结构;线性代数;交换环和模;环的结构;范畴论。 读者对象:数学专业研究生和科研人员.
Homological algebra first arose as a language for describing topological prospects of geometrical objects. As with every successful language it quickly expanded its coverage and semantics, and its contemporary applications are many and diverse. This modern approach to homological algebra, by two leading writers in the field, is based on the systematic use of the language and ideas of derived categories and derived functors. Relations with standard cohomology theory (sheaf cohomology, spectral sequences, etc.) are described. In most cases plete proofs are given. Basic concepts and results of homotopical algebra are also presented. The book addresses people who want to learn a modern approach to homological algebra and to use it in their work. For the second edition the authors have made numerous corrections.
本书是Springer《数学研究生教材》第73卷,初版于1974年,30年来一直是美国及世界各国大学数学系采用的研究生代数教本。此书Springer已重印12次,由此证明这是一部经典的研究生教材。全书取材适中,论述清晰,自成系统.本书在一些问题的处理上有其独到之处,如Sylow定理的证明、伽罗瓦理论的处理、可分域的扩张、环的结构理论等。书中有大量的练习和精心挑选的例子。 目次:群和群的结构;环;模;域和伽罗瓦理论;域的结构;线性代数;交换环和模;环的结构;范畴论。 读者对象:数学专业研究生和科研人员.
李继根等编的《矩阵分析与计算》是基于编著者多年从事矩阵分析类课程的教学改革实践经验,并结合学生的实际情况编写而成的,可作为高等院校理工科各专业研究生和工程硕士学习矩阵分析等相关课程的,也非常适合理工科高年级本科生学完线性代数课程后进一步学习之用。全书分为线性方程组、线性空间与线性变换、内积空间、特殊变换及其矩阵、范数及其应用、矩阵分析及其应用、特征值问题七章。该既注意系统性,又注重体现工科特色,深广度适中,并适当略去了一些定理的证明。书中注重启发式教学,采用多种方式自然地引入基本概念和基本方法。同时,行文时非常注重几何直观及与类比,力争做到深入浅出、简洁易懂,以便于自学。书中还穿插了许多矩阵计算知识,并附有大量matlab代码,以渗透科学计算思维。此外,书中加入的大量数学史与数学文
《组合数学习题解答》是电子科技大学等多所高等院校目前正在使用的《组合数学》(电子科技大学出版社出版,2003年,孙世新编著)教材的配套指导书。其主要内容包括原教材中的每一章的内容概要以及习题解答,它几乎涉及计算机专业及非数学专业适用的现行组合数学教材中的所有基本理论、基本问题、基本方法和应用。 《组合数学习题解答》适合于计算机专业及非数学专业的理科、工科专业的本科生、研究生作为参考书使用,也可作为组合数学教师教学参考用书以及工程技术人员的自学教材或参考书。
吴悦辰编著的《三线坐标与三角形特征点》主要包括十章:三线坐标和重心坐标,三角形的特征点( 一)——一些经典的几何特征点,三角形的特征点(二 )——一些与透视相关的几何特征点,三角形的特征点(三)——共轭与变换,三角形的特征点(四)一一其他几何特征点,形形色色的直线,形形色色的三角形,形形色色的圆,三角形的二次曲线,三角形的三次曲线。 本书适合数学爱好者参考阅读。
本书是代数学基本观点的一个很好的展示。作者写这本书的想法来源于1955年他在芝加哥大学的演讲。从那时到现在代数学经历了很大的发展,该书的思想也是一直在更新,现在的这个版本是原版的修订版,称得上是一本真正的现代代数拓扑学。既可以作为教科书,也是一本很好的参考书。 本书分为三个主要部分,每部分包含三章。前三章都是在讲述基础群。章给出其定义;第二章讲述覆盖空间;第三章发生器和关系,同时引进了多面体。四、五、六章都是在为下面章节研究同调理论做铺垫。第四章定义了同调;第五章涉及到更高层次的代数概念:上同调、上积,和上同调运算;第六章主要讲解拓扑流形。最后三章仔细研究了同调的概念。第七章介绍了同调群的基本概念;第八章将其应用于障碍理论;第九章给出了球体同调群的计算。每一个新概念的引入都会