数是如何出现的?早期那些五花八门、千奇百怪的计数文字,如何变成了通用的阿拉伯数字?是谁发明或发现了代数?运算的规则是怎样建立的? 几何是怎样出现的?几何与代数有着什么样的紧密关系? 本书带您回到远古、中古、近代,为您讲述几何与代数画卷中的一个个小故事,认识故事中的主角:他们出现在从远古到十八世纪的历史长卷里,有着各异的背景、身份和个性;他们生活在世界上不同种族集居的地区,生存的环境大多很恶劣 或战火弥漫,或饥病蔓延,或陷于阴谋处于动乱,数千年的历史进程,和平只是难得的瞬间 他们历尽磨难,但执着地思考、探索、追寻。他们中间,虽然有罕见的天才,但很多并非专业的数学家,更多的,甚至连名字也没有留下来。正是他们一砖一石、一代又一代的努力,为现代数学这座精美富丽的殿堂搭建起坚实的地基!
本书从数学分析的角度阐述了矩阵分析的经典和现代方法,主要内容有特征值、特征向量、范数、相似性、酉相似、三角分解、极分解、正定矩阵、非负矩阵等.新版全面修订和更新,增加了奇异值、CS分解和Weyr标准范
有限p群是有限群最基本和最重要的分支之一。从群论诞生起,特别是从sylow1872年发表的定理(sylow定理)起,p群就受到所有群论学者的关注,并且取得了很重要的研究成果。我国对于p群的研究开始于20世纪30年代华罗庚和段学复先生组织的p群讨论班,他们对于p群的算术结构作了系统的研究,得到了若干重要的成果。 作者徐明曜多年来从事有限p群的研究,并多次在北京大学、山西师范大学为研究生开设有限p群课程;作者曲海鹏近年来也做了大量p群的研究和教学工作。本书就是在二位作者编写的讲义基础上经过补充、整理而成的,是一部研究生教材。全书共分12章。内容包括:群论基本概念复习,p群的初等事实,某些重要的换位子公式,p交换p群,正则p群,亚循环p群,子群结构、交换子群、正规子群,极大类p群,p群的幂结构,有限p群的一般分类问题,有限幂
郑元禄编著的《含参数的方程和不等式》主要介绍含参数的方程和不等式,二次方程和不等式,无理方程和不等式,三角方程和不等式的基本理论和解法,《含参数的方程和不等式》是一本关于不等式和方程的综述集。
Thisbookprovidesanintroductiontoabstractalgebraicgeometryusingthemethodsofschemesandcohomology.Themainobjectsofstudyarealgebraicvarietiesinanaffineorprojectivespaceoveranalgebraicallyclosedfield;theseareintroducedinChapterI,toestablishanumberofbasicconceptsandexamples.ThenthemethodsofschemesandcohomologyaredevelopedinChaptersIIandIII,withemphasisonapplicationsratherthanexcessivegenerality.Thelasttwochaptersofthebook(IVandV)usethesemethodstostudytopicsintheclassicaltheoryofalgebraiccurvesandsurfaces.
本书特色:
线性代数是处理矩阵和向量空间的数学分支,在现代科学的各个领域都有应用。本书用现代方法给出了线性代数的基本介绍,同时选录了线性代数在不同领域中的有趣的应用,是一本的现代教材。主要内容包括线性方程组、矩阵代数、行列式、向量空间、特征值与特征向量、正交性和二乘法、对称矩阵和二次型等。此外,本书包含大量的练习题、习题、例题等,便于读者学习、参考。 本书适合作为高等院校理工科相关专业线性代数课程的教材,也可作为相关研究人员的参考书。
《群表示论》是作者在北京国际数学研究中心给数学基础强化班授课讲稿的基础上,结合在北京大学数学科学学院多次讲授群表示论课的心得体会编写而成,主要内容包括:有限群在特征不能整除群的阶的域上的线性表示、无限群在复(实)数域上的有限维和无限维线性表示等。《群表示论》紧紧抓住群表示论的主线——研究群的不可约表示,首先提出要研究的问题,探索如何解决问题,把深奥的群表示论知识讲得自然、清晰、易懂。在阐述无限群的线性表示理论时,本书介绍了数学上处理无限问题的典型方法,并且对于需要的拓扑学、实(复)分析以及泛函分析的知识作了详尽介绍。本书在绝大多数章节中都配有习题,并且在书末附有习题解答。 《群表示论》可作为高等院校数学系和物理系的研究生以及高年级本科生的群表示论课的教学用书,也可供数学系和物