本书介绍了现代数值近似技术的理论及实用知识,解释了它们的工作原理。同它的前几个版本一样,该书仍将重点放在近似技术的数值分析上,以便为读者今后的学习打下坚实的数值分析与科学计算基础。本书内容丰富、翔实,可以根据不同的学习对象和学习目的,选择、组织、串联相应的章节,形成侧重于理论或是侧重于实用的两种学习策略。书中的每个概念均以大量的例子说明,同时书中还包含2000多个习题,范围从方法、算法的基本应用到理论的归纳与扩展,涉及物理、计算机、生物、社会科学等多个不同的领域。通过这些实例,进一步说明在现实世界中,数值方法是如何被应用的。第七版新增了两个突出的部分,一是前承条件共轭梯度方法,为线性方程系统提供了更完备的解决方法;另一部分是同伦与连续方法,为非线性方程系统的近似求解提供了不同的方
hepresentbookiasedonlecturesgivenbytheauthorattheUniversityofTokyoduringthepasttenyears.ItisintendedasatextbooktobestudiedbystudentsontheirownortobeusedinacourseonFunctionalAnalysis,i.e.,thegeneraltheoryoflinearoperatorsinfunctionspacestogetherwithsalientfeaturesofitsapplicationtodiversefieldsofmodemandclassicalanalysis.Necessaryprerequisitesforthereadingofthiookaresummarized,withorwithoutproof,inChapter0undertitles:SetTheory,TopologicalSpaces,MeasureSpacesandLinearSpaces.Then,startingwiththechapteronSemi-norms,ageneraltheoryofBanachandHilbertspacesispresentedinconnectionwiththetheoryofgeneralizedfunctionsofS.L.SOBOLEVandL.SCHWARTZ.Whilethebookisprimarilyaddressedtograduatestudents,itishopeditmightproveusefultoresearchmathematicians,bothpureandapplied.Thereadermaypass,e.g.,fromChapterIX(AnalyticalTheory.ofSemi-groups)directlytoChapterXIII(ErgodicTheoryandDiffusionTheory)andtoChapterXIV(IntegrationoftheEquationofEvolution).Suchmaterialsas"WeakTopologiesandDualityinLocallyConvexSpaces"and"NuclearSpaces"areprese
本书内容概括了《数学分析》的全部命题,但该书习题数量多,许多题目在题型和解题方法上具有相似之处,同时该书难题多,许多题目的难度超出对同学们的要求。为了帮助广大同学更好地掌握《数学分析》的基本概念,综合运用各种解题技巧和方法,提高分析问题和解决问题的能力,我们从吉米多维奇的《数学分析习题集》中选择了一部分习题进行汇编。这些习题涉及内容广、题型多,基础性题目从多个角度帮助广大同学理解相应的基本概念和基本理论,帮助同学掌握基本解题方法;而那些层次性较高的题目,涉及的内容多,技巧性强,掌握这些题目的解题方法,可以使广大同学举一反三,触类旁通,开拓解题思路,更好地掌握《数学分析》的基本内容和解题方法。
《Ь.П.吉米多维奇数学分析习题集题解》自1979年出版发行以来,历经30多个春秋,一直畅销不衰,深得读者厚爱。读者通过学习该书,对掌握数学分析的基本知识、基础理论和基本技能的训练,感到获益匪浅,赞誉
比较系统地对无穷级数在数学中所起的技术工具作用与连分数解析理论构造闵可夫斯基(Minkowski)函数及将其开拓到复数域上作了介绍。特别较为无穷发散级数的几种和性结合实际地作了论述和论证。当然这是《无穷级数与连分数》在数学思想方面的体现。 《无穷级数与连分数》章主要介绍无穷收敛级数在经典与近代数学中的技术工具作用,第二章主要介绍无穷发散级数作为某些函数的渐进级数作相应的数值计算与求微分方程的数值解。同时不同程度地阐明了对无穷发散级数的几种可和性方法。第三章论述连分数与无穷级数的关系及连分数的解析理论。第四章应用其连分数的解析理论,特别是Denjoy引理构造了闵可夫斯基函数,而这个函数具有明显的特征,顺便将其解析开拓到复平面的某个区域内,给出最普遍的表示形式。
数学分析是大学数学系的必修课,也是理工科高等数学的主要组成部分,更是研究生考试的必考内容。关于数学分析,很富盛名习题,莫过于苏联数学家,鲍里斯帕夫罗维奇 吉米多维奇编写的《数学分析习题集》。但是在相当
《泛函分析》(原书第2版)是泛函数分析的经典教材,作为Rudin的分析学经典著作之一,《泛函分析》(原书第2版)秉承了内容精练、结构清晰的特点。第2版新增的内容有Kakutani不动点定理,Lamonosov不变子空间定理以及遍历定理等,另外,还适当增加了一些例子和习题。
本书由在国际上享有盛誉的普林斯顿大学教授Stein撰写而成,是一部傅立叶分析的入门教材,理论与实践并重。为了便于非数学专业的学生学习,全书内容简明、易懂。全书分为3部分:部分介绍傅立叶级数的基本理论及其在等周不等式和等分布中的应用;第2部分研究傅立叶变换及其在经典偏微分方程及Radom变换中的应用;第3部分研究有限阿贝尔群上的傅立叶分析。书中各章均有练习题及思考题。
《惠更斯与巴罗,牛顿与胡克:数学分析与突变理论的起步,从渐伸线到准晶体》是由作者于1986年在莫斯科数学协会为大学生开设的数学系列讲座的开幕式上所做的报告扩充而成。作者在书中用现代的数学观点阐述了在惠更斯、巴罗、牛顿、莱布尼茨以及胡克等人的著作中所呈现出来的微积分与理论物理的形成历史,讲述了17世纪80年代的著作与20世纪80年代的著作中数学思想的对比和关系——包括波前的奇点,考克斯特反射群(包括二十面体群)与现代变分学、准晶体对称性之间的关系等。 《惠更斯与巴罗,牛顿与胡克:数学分析与突变理论的起步,从渐伸线到准晶体》中还用现代的复变茹科夫斯基函数讨论了行星轨道椭圆性的牛顿定律,并由此得到了一个新的对偶定律,建立了在不同中心力场中的运动之间的关系,让我们知道了万有引力定律和胡克定律之间
本书是世界知名统计学家的力作,主要内容有多元正态分布、方差分析、回归分析、因子分析、椭球等高分布、相依性模式、图模型。附录中还列出了矩阵理论、Wilk似然准则和其他常用检验的显著性水平的分位数。本书在世界各高等学校中广为采用,是一本经典的多元统计分析课程的教材,也可供相关统计研究人员、应用多元统计的科技工作者参考。