CIMPA-UNESCO-CHINA暑期学校“自守形式与L-函数”于2010年8月1日至14日在山东威海校区举办,该国际暑期学校受联合国教科文组织资助,邀请的演讲人都是本领域的专家。刘建亚主编的《自守形式与L-函数》汇集了这次暑期学校以下演讲人的讲义:J.Cogdell,G.Harcos,李小青,P.Michel,A.Reznikov,F.Shahidi以及叶扬波。《自守形式与L-函数》涵盖自守形式、L-函数、谱理论及表示理论等方面的内容,既给出了自守形式与L-函数很好的介绍,也指出了其算术应用。《自守形式与L-函数》不仅是本领域专家们有价值的参考书,也是研究生开展研究时极好的入门书。
《泛函分析(英文版)》在Princeton大学使用,同时在其它学校,比如UCLA等名校也在本科生教学中得到使用。其教学目的是,用统一的、联系的观点来把现代分析的“核心”内容教给本科生,力图使本科生的分析学课程能接上现代数学研究的脉络。
刘培杰数学工作室编的《柯西函数方程--从一道上海交大自主招生的试题谈起/数学中的小问题大定理丛书》从一道上海交大自主招生试题谈起,讲授了柯西函数方程,及由此衍生的诸多问题。本书透过柯西函数方程,向读者勾勒了这道自主招生试题的全貌,指出了大学自主招生选取题目的背景及深厚内涵,考察学生的数学思维方向等,展示了函数方程在中学数学思想中的重要性。本书适合于高中生、大学生以及数学爱好者参考阅读。
本书是一本内容十分翔实的实分析。它包含集论,点集拓扑。测度与积分,Lebesgue函数空间,Banach空间与Hilbert空间,连续函数空间,广义函数与弱导数,Sobolev空间与Sobolev嵌入定理等;同时还包含Lebesgue微分定理,Stone-Weierstrass逼近定理,Ascoli—Arzela定理,Calderon—Zygmund分解定理,Fefferman—Stein定理。Marcinkiewlcz插定理等实分析中有用的内容。本书内容由浅入深。读者具有扎实的数学分析知识基础便可学习本书,学完本书的读者将具备学习分析所需要的实变与泛函(不包括算子理论)的准备知识和训练。
本书是关于函数方程的解法、应用以及一些理论问题的专门著作。全书共6章,章介绍函数方程的有关概念和分类;第二章较为系统地介绍了函数方程的一些常见的求解方法;第三章给出三类具有特殊结构的函数方程的处理技巧;第四章主要讨论几类函数方程解的性质,包括解的存在性、稳定性等,并且介绍了巴拿赫空间中的函数方程;第五章、第六章是函数方程的各种应用,内容涉及许多领域。本书内容丰富翔实、说明深入浅出,并收集了大量历届、国际数学奥林匹克试题。本书可供高等院校数学教师、数学工作者和科技人员参考,对广大中学数学教师和参加数学竞赛的中学生也有的参考价值。
本书系统地介绍了泛函分析的基础知识。全书共分五章:第1章,距离空间与赋范空间;第2章,有界线性算子;第3章,Hilbert空间;第4章,有界线性算子的谱;第5章,拓扑线性空间。本书在选材上注重少而精,强调基础性。在结构安排上,由浅入深,循序渐进,系统性和逻辑性强。在叙述表达上,力求严谨简洁,清晰易读,能够简化的证明,在保持书稿结构严谨的前提下尽量予以简化,便于教学和学生自习。本书配备了较多的习题,以备选用。本书的末尾对大部分习题给出了提示或解答要点,供读者参考。本书的第5章介绍了拓扑线性空间的基本概念,这一章的内容不是本科生教材必须包含的内容,可以作为有兴趣的读者参考。本书可以作为综合性大学,理工科大学和高等师范院校的数学各专业或其他学科部分专业本科生的教材或参考书,也可以供研究生、相关教师
多项式,指数函数,三角函数(正弦函数和余弦函数)以及许多其他函数都与整函数相联系,整函数在数学和它的应用中起着重要的作用,那些不是多项式的整函数(称为整函数)在许多方面都奇妙地将它们归入“无穷高次多项式”一类,书中讲授整函数的基本性质,它们的零点,增长速度,值之间的代数关系以及其他性质,本书基于作者的两个讲义,那两个讲义作者在莫斯科为教师进修班讲授过。只要读者具有复数和数学分析的基础知识(微分法,积分法和级数概念)就能读懂全书,本书适合师生及数学爱好者使用。
本书系统讨论了不确定度的基础和原理,详细研究了不确定度的各种方法,分析了不确定度的多方面应用。本书可供计量测试、质量监督、认可认证、标准、科研、生产人员以及大专院校师生使用。
本书主要介绍著者在不定方程、代数数论、组合设计、整图和有限单群的精细刻画方面的应用的研究成果。全书共分8章佩尔方程与F义佩尔方程,一些三次与四次不定方程,二次域与不定方程,一些高次不定方程,一些指数不定方程,不定方程对组合设计的应用,用佩尔方程的解构造整图,用不定方程的方法确定单Kn群。