本书是作者多年在复旦大学讲授“数学分析原理”课程的讲义基础上编写而成的。全书共7章,内容包括:分析基础、实数系基本定理,极限与连续,微分,积分,级数,多元函数微积分,反常积分和含参变量积分。教材注重思想性,在内容上尽量做到融会贯通,突出理论的严密性,同时每章都精选了例题与习题。
本书讲述了一种理解和学习微积分的新思路。书中通过探索微积分发展历程背后的数学动机,展现了这一数学基本工具的魅力。作者根据自己研究和教授微积分的丰富经验,结合多年从事中学和大学数学教育的心得体会,对传统的微积分教学方式,即大多按照从极限、微分、积分到级数的顺序进行学习的方法提出了异议,探讨了一种更有趣、更易被接受和理解的学习方法。作者写过不少富有启发意义的微积分教材,此次利用自己在教学与研究方面的特长,写成了这本内容丰富、风格有趣的 小书 。本书适合中学以上水平的数学爱好者、学生和教师阅读。
本书是由国家自然科学基金委员会数学天元基金和高等教育出版社共同推出的《俄罗斯数学教材选译》之一。 本书是俄罗斯莫斯科大学经典数学教材之一,是微分几何教程的简明阐述,在大学数学系两个学期中讲授。内容包含:一般拓扑,非线性坐标系,光滑流形的理论,曲线论和曲面论,变换群,张量分析和黎曼几何,积分法和同调论,曲面的基本群,黎曼几何中的变分原理。叙述中用大量的例子说明并附有习题,常有补充的材料。 本书适合数学、物理及相关专业的高年级本科生、研究生、高校教师和研究人员参考使用。
拟微分算子理论自20世纪中叶形成以来,经过几十年的发展已成为现代分析理论的重要组成部分,并特别在偏微分方程理论及相关问题的研究中成为必不可少的工具。本书详细介绍了拟微分算子的基本理论及其在偏微分方程中的应用,为基础数学与应用数学专业的研究生、教师及相关研究人员提供了宝贵的参考。本次修订少量更新了部分章节内容并增加了后记。 本书既是这一领域的一本入门书,又介绍了该理论在偏微分方程中几个最重要方面的应用,可为读者进一步学习与研究做准备。
《微积分学教程(第1卷)(第8版)》是一部卓越的数学科学与教育著作。自*版问世50多年来,本书多次再版。至今仍被俄罗斯的综合大学以及技术和师范院校选作数学分析课程的基本教材之一。并被翻译成多种文字,在世界范围内广受欢迎。 本书所包括的主要内容是在20世纪初*后形成的现代数学分析的经典部分。本书*卷包括实变量一元与多元微分学及其基本应用;第二卷研究黎曼积分理论与级数理论;第三卷研究多重积分、曲线积分、曲面积分、斯蒂尔吉斯积分、傅里叶级数与傅里叶变换。 本书的特点是:一、含有大量例题与应用实例;二、材料的叙述通俗、详细和准确;三、在极少使用集合论的(包括记号)同时保持了叙述的全部严格性,以便读者容易初步掌握本课程的内容。 本书可供各级各类高等学校的数学分析与高等数学课程作为教学参考书,是数学
本书为微积分入门科普读物,书中以微积分的“思考方法”为核心,以生活例子通俗讲解了微积分的基本原理、公式推导以及实际应用意义,解答了微积分初学者遭遇的常见困惑。本书讲解循序渐进、生动亲切,没有烦琐计算、干涩理论,是一本只需“轻松阅读”便可以理解微积分原理的入门书。
本书一部讲述代数曲线的入门书籍,可以作为一二年级数学专业的教程,具备基本的微积分知识可以完全读懂这本书。通过分类实数上的不可约三次曲线和证明它们的点能够形成abelian群,使得椭圆曲线的讲述非常易于学习,书中包括了两曲线相交数上的bezout定理的简单证明。在这新的版本中深入研究了幂级数参化曲线,并且列举出了参化的两大用处,计数曲线的多相交和曲线对偶性的证明及其重叠。目次:曲线的相交;二次曲线;三次曲线;参化曲线。
“无穷小分析”这一名称是由欧拉创始的,这正是数学中“分析”一支名称的起源。本书作者所在的布尔巴基学派对20世纪的法国数学教学改革作出了重要的贡献,但也出现了一些消极影响,例如倡导独立子传统数学的所谓“新数学”;也有过只重视理论。而忽略计算的倾向。本书是作者为纠正这些偏向而设置的课程编写的。在本书所讲的无穷小计算中。使用不等式要比使用等式多得多,而且可用三个词作为本书的提要:求上昇、求下界、逼近。作者希望读者通过学习本书。不是只学会一些无穷小分析中运算的机械程序,而是还懂得有关“直观”的概念。 本书包含函数与映射的逼近及渐近展开式、复查解析函数的基础、一阶与二阶线性微分方程的近似解法与稳定性以及贝寡尔函数等。书中有不少新意。并附有相当数量的优秀习题。 本书可供大学数学专业
本书以复杂构造深度成像为目标,系统阐述了波动方程成像方法及其计算。全书共分8章,由易到难,涉及计算数学、科学计算、应用数学、地球物理等领域的相关知识。内容包括:Kirchhoff偏移、零偏移距记录合成、复杂构造叠后深度成像、复杂构造叠前深度成像、三维多方向分裂隐式波场外推、正多边形网格上Laplace算子的差分表示、三维频率空间域显式波场外推、三维复杂构造叠前深度成像。全书注重理论与实践相结合,既有系统的理论方法,又有丰富的数值计算;既有经典方法,又有*成果。 本书可作为科学计算、应用数学、反问题、应用地球物理、声学成像等专业的高年级本科生、研究生的教材或教师的教学参考书,也可供相关专业的科研工作者和工程技术人员参考。
《托马斯微积分》1951年出版第11版,是一本深受美国广大教师和学生欢迎的教材,不少学校和教师采用它作为微积分课程的教材,在相当一段时间里,它是麻省理工学院微积分课程所用的教材之一。 韦尔、哈斯、吉尔当诺著的《托马斯微积分(影印版下第11版)(英文版)》具有以下几个突出特色:取材于科学和工程领域中的重要应用实例以及配置丰富的习题;对每个重要专题均用语言的、代数的、数值的、图像的方式予以陈述;重视数值计算和程序应用;切实融入数学建模和数学实验的思想和方法;每个新专题都通过清楚的、易于理解的例子启发式地引入,可读性强;配有丰富的教学资源,可用于教师教学和学生学习。
本书是以作者1986年~1987年在Lund大学三个学期授课的讲义为基础,经改写而成的,主要论述了非线性双曲型偏微分方程解的全局存在性或“爆破”(blowup),以及解的奇异性传播。书中所用的方法是基于对波方程或Yang-Mills方程的非线性摄动研究中采用的保角变换,以及对非线性方程解的余法向奇异性的传播。 目次:常微分方程;一个空间变量的一阶标量方程;多个空间变量的一阶标量方程;一个空间变量的一阶守恒律系统;补偿列紧性;波方程的非线性摄动;Klein-Gordon方程的非线性摄动;微局部分析;拟微分算子;仿微分计算;奇异性的传播。 读者对象:本书可作为大学生在学习基础的分布理论、测度论和泛函分析等课程之后,进一步学习非线性双曲型偏微分方程的教科书。
《微积分(经管类)(第2版)》是为了适应培养“实用型、应用型”的大学本科经济管理人才的要求而编写的经济管理类本科生的基础课教材《微积分》(经管类)。内容包括函数、极限和连续、导数和微分、中值定理与导数应用、不定积分、定积分、定积分应用、微分方程与差分方程、空间解析几何、多元函数微分学、二重积分、级数。 《微积分(经管类)(第2版)》可供一般高等院校、独立学院的经济管理类专业学生使用。
本书内容包括常微分方程两点边值问题的差分解法、椭圆型方程的差分解法、抛物型方程的差分解法、双曲型方程的差分解法和有限元方法简介。力求做到:(1)精选内容。重点介绍有限差分方法。(2)难点分散。对于差分方法,先从常微分方程两点边值问题出发,介绍差分方法的有关概念以及常用的分析技巧,然后将这些概念和技巧分别应用于椭圆型方程、抛物型方程和双曲型方程的数值求解。对于有限元方法,也先从常微分方程两点边值问题出发,介绍有限元方法的基本思想,再研究椭圆型方程的有限元解法。(3)强调会“用”各种数值方法。先举例示范,再要求学生模仿,*后到熟练掌握。书末的两个附录分别介绍有限Fourier级数法和Schrodinger方程的差分方法。
本书系统地论述了微分几何的基本知识。作者用前3章,以及第6章共计4章的篇幅介绍了流形、多重线性函数、向量场、外微分、李群和活动标架等基本知识和工具。基于上述基础知识,论述了微分几何的核心问题,即联络、黎曼几何、以及曲面论。第7章是当前十分活跃的研究领域——复流形。陈省身先生是此研究领域的大家,此章包含有作者独到、深刻的见解和简捷、有效的方法。第8章的Finsler几何是本书第2版新增加的一章,它是陈省身先生近年来一直倡导的研究课题,其中Chern联络具有突出的性质,它使得黎曼几何成为Finsler几何的特殊情形。后两个附录,介绍了大范围曲线论和曲面论,以及微分几何与理论物理关系的论述,为这两个活跃的前沿领域提出了不少进一步的研究课题。 此书可作为高校数学与理论物理专业高年级本科生和研究生教材,也可供从事
本书是“北京大学数学教学系列丛书”之一,是数学各专业本科生“常微分方程”课程的教材,它系统介绍了常微分方程的基本理论和基本方法,内容包括:微分方程的基本概念、初等积分法、微分方程解的存在和唯 一性、解对初值和参数的依赖性、线性微分方程组、幂级数解法、边值问题、一阶偏微分方程、微分方程定性理论简介。本书作者在北京大学数学学院讲授“常微分方程”课程二十余年,具有丰富的教学经验和积累,在微分方程的教学和科研方面有一定的建树。本书注重知识的来龙去脉,注意理论与实际相结合,强调方法与应用,是部 的“常微分方程”教材。