《拓扑学》(原书第2版)系统讲解拓扑学理论知识。在美国大学作为教材近20年,*近由原作者进行了全面更新。第1部分为一般拓扑学,讲述点集拓扑学的内容,介绍作为核心题材的集合论、拓扑空问、连通性、紧致性以及可数性公理和分离性公理;第二部分为代数拓扑学,讲述与拓扑学核心题材相关的主题,其中包括基本群和覆叠空问及其应用。 《拓扑学》(原书第2版)较大的特点在于概念引入自然,循序渐进。对于疑难的推理证明,将其分解为简化的步骤,不给读者留下疑惑。此外,书中还提供了大量练习,可以巩固加深学习的效果。严格的论证、清晰的条理、丰富的实例,让深奥的拓扑学变得轻松易学。
许多人时常会感叹于一些数学题解法的简练和精妙,并感到困惑:这样巧妙的解法我怎么想不到?本书将完整地展现求解几何题的思考过程,特别是从错误到正确的求索过程。全书分为两篇,上篇以 17 道几何题为例,从学生的角度去探索和求解;下篇则分 7 讲完整地讲解平面几何的典型问题,从教师角度启发和引导学生思考。书中不以题目的数量和知识点的覆盖面取胜,重在讲解思维与方法。这些思维与方法不是平面几何所特有的,而是理工科解决未知问题的共性范式。学生通过阅读本书可以掌握几何题背后的思考逻辑,从容解出平面几何题,将来面对未知问题也不再畏惧。本书适合已经学完平面几何基础知识,希望搞定中考几何压轴题及数学竞赛几何题的学生阅读。
本书所研究的几何变换仅限于平面上的合同变换、相似变换和反演变换这三类初等几何变换;本书系统地阐述了这三类几何变换的理论和它们在几何证题方面的应用。阅读本书只需要具有中学数学知识即可;对于阅读几何变换理论有困难的读者,也可以只阅读与几何证题有关的章节。 本书适合大中师生及数学爱好者使用。
分形理论是一门新兴的非线性学科,它是研究自然界不规则和复杂现象的科学理论和方法。本书主要介绍分形的基本理论及其在科学技术和人文艺术等方面的应用。全书共分10章,用通俗易懂的语言由浅入深地介绍了分形几何的基本概念、分形维数的计算、分形图形的生成、分形生长模型与模拟、分形插值与模拟、随机分形以及与分形密不可分的混沌理论的基本知识。在此基础上,通过总结自然界中的分形行为,用实例概述了分形图形、分形维数、分形模拟技术、分形图像编码压缩技术等在自然科学、工程技术、社会经济和文化艺术等领域中的应用成果。
本书与初中、高中数学竞赛大纲和新编数学教材同步配套,相应地分为若干章节,每个章节都精选典型例题,进行详细讲解,还编写了课外习题,供学生练习,便于学习者了解数学竞赛中平面几何内容的各项要求.本书选材于全国各地历年中考压轴几何题,各届初 中、高中数学竞赛几何题以及经典的几何问题,从多家数学网站、论坛、贴吧、数学群、公众号等数万道几何题中,经过精选、分析、分类、归纳、总结,形成具有集系统性数理思维训练 和实战演练于一体的培优教程 本书适用于参加初中、高中数学竞赛的学生学习和训练,对参加大学自主招生、高考 的学生及初中、高中、大学数学教师也有一定的参考价值
本书中册包含4章(第11~14章)和6个附录(附录B~G)。第11~13章依次介绍时空的整体因果结构、渐近平直时空和Kerr-Newman黑洞,第14章详细讲述与参考系有关的各种问题,包括时空的3+1分解。附录B和C分别简介量子力学的数学基础和几何相,附录D和E分别介绍能量条件和奇性定理,附录F讲述微分几何很重要的Frobenius定理,附录G则用微分几何语言比较详细地讨论了李群和李代数的知识,并专辟一节介绍对物理学特别重要的洛伦兹群和洛伦兹代数。本册仍然贯彻上册深入浅出的写作风格,为降低读者阅读难度采取了多种措施。
《代数几何学原理》(EGA)是代数几何的经典著作,由法国著名数学家Alexander Grothendieck(1928 2014)在J. Dieudonn 的协助下于20世纪50 60年代写成。在此书中,Grothendieck首次在代数几何中引入了概形的概念,并系统地展开了概形的基础理论。EGA的出现具有划时代的意义,对现代数学产生了多方面的深远影响。 首先,EGA为代数几何建立了极其广阔、完整和严格的公理化概念体系和表述方式(现已成为代数几何的标准语言),极大地整合了这一数学分支的古典理论,并为后来的发展奠定了坚实的基础。其次,EGA把数论和代数几何统一在一个理论框架之内,促成了平展上同调等理论的建立,进而导致了著名的Weil猜想的证明的完成(由Grothendieck的学生Deligne所完成,并因此获得Fields奖)。当前数论和代数几何中的许多重大进展都在很大程度上归功于EGA所建立的思想方法,比如Mordell
几何蕴含无穷魅力,本书汇其精华,充分展现其神奇、迷人、和谐、优雅之处,挖掘历代探寻者的成就、智慧和精神.本书共28章,紧扣现行初高中数学教材中的几何内容,并遵循其逻辑顺序,以教材为起点,进行挖掘、引申、拓展,探寻知识的发生、发展过程及纵横联系,了解知识背后的故事及人文精神,开发新的知识生长点.促进“ ”倡导的“综合与实践”、探究性学习和跨学科学习.认识数学的科学价值、应用价值、文化价值和审美价值.本书适合中学生课外阅读,也适合中学数学教师、数学教育工作者和大学数学专业师生参考.
本书是一本关于微分几何与广义相对论的专著,其特点是强调用数学结构和物理现象作为不可分割的统一体去发现和揭示数学与自然奥秘.在这部著作中,提出一种关于暗物质与暗能量的统一理论,它是非表象的理论,可很好地解释暗物质与暗能量现象.本书不仅提出和总结了作者的许多新理论和新结果,而且采用直指本质的方式陈述和介绍有关方面成熟的理论与概念.
内容介绍 本书部教程,可以作为高年级本科生或者研究的一年级课程,也可以用于自学。这第二版,增加了50来页新材料,许多篇幅都做了更新;简化了证明,增加了新例子和练习。必需的点集拓扑在附录中用25面的篇幅给出,另外的一些附录重述了实分析和线性代数。书中提供了许多练习和问题的提示和解答。流形、光滑曲线和曲面的高维类似物,这些都是现代数学的基本研究对象。将代数、拓扑和分析几个领域结合起来,流形已经很好地应用在经典力学、广义相对论和量子场论等多个领域。本书直达主题,流形的讲述旨在帮助读者更快地了解这个科目的本质。学完该书读者应该能够计算,至少是简单空间的Rham上同调,这是一个流形的本拓扑不变性之一。同时读者也获得了进一步学习几何和拓扑所必需的知识和技巧。目次:欧几里得空间;流形;切向空间;
无
本书提供了俄罗斯在中学,其中包括在专门化的学校学习的几乎所有平面几何的问题及各题的提示,本书适用于大学、中学师生和数学奥林匹克选手及教练员。
该书是一本关于光滑流形理论的导论性研究生教材,旨在让学生们熟悉掌握将流形用在数学和科研工作中需要的工具,比如光滑结构、切向量和余向量、向量丛、陷入和嵌入的子流形、张量、微分形式、de Rham上同调、向量场、流量、叶状结构、李导数、李群、李代数等。充分利用现代数学提供的强大的工具的同时,书中采用尽可能具体的研究方法, 选取了各种图像,并对用几何思维考虑抽象概念进行了直观的讨论。
《在陈省身先生影响下的微分几何》是献给20世纪伟大的几何学家之一陈省身先生100周年诞辰的纪念文集。它包括了世界各地的数学家、特别是华人数学家的优秀研究文章。这些文章评述了陈省身先生所研究领域的目前状况,并讨论未来的发展方向,r8容涵盖了Gauss—Bonnet公式、共形几何、CR几何、流形、Ricci流、Einstein度量、等参超曲面、比较定理.Tits厦等方面。 《在陈省身先生影响下的微分几何》适合研究生和年轻的数学工作者阅读,其他读者亦可从中找到相关领域的有价值的信息。
内容简介:本书为《平面几何图形特性新析》的下篇,以专题的形式介绍了平面几何中*基本的图形性质。这些性质是作者在平面几何研究中以新的角度探索并呈现的,是求解有关几何难题的知识储备。 本书内容适合初 、 高中学生 , 尤其是数学竞赛选手和初 、 高中数学教师 , 以及数学奥林匹克教练员使用 , 也可作为高等师范院校数学教育专业 , 以及教师进修数学教育研讨班开设的 竞赛数学 或 初等数学研究 等课程的教学参考书 。
无
本书主要由法国资深微分几何学家贝尔热在巴黎大学多年讲授微分几何课程讲稿的基础上编纂而成。 本书强调几何与分析的有机结合,始终坚持对于分析,揭露其几何实质,而对于几何,则洞察其分析精髓。本书对于常微分方程、单位分解、临界点、拓扑度和流形上的微积分等研究微分几何的各种工具做了相当充分的讲解。内容重点是曲线的局部和整体理论,对于曲面的局部和整体理论则做了比较全面的概述,而对于其详尽的证明则推荐相关的文献供读者查阅。书中配备了丰富的习题。 本书是基础数学和应用数学系本科生乃至其他理工科学生学习微分流形和微分几何的优秀参考书。
Credlts for Figures and Color Plates Much has changed in the world of fractals, computer graphics and modem mathematics since the first edition of Fractals Everywhere appeared. The company Iterated Systems, Inc., founded by Michael Barnsley and Alan Sloan, is now competing in the image compression field with both hardware and software products that use fractal geometry to compress images. Indeed, there is now a plethora of texts on subjects like fractals and chaos, and these terms are rapidly becoming "household words.
Since the early work of Gauss and Riemann, differential geometry has grown into a vast network of ideas and approaches, encompassing local considerations such as differential invariants and jets as well as global ideas, such as Morse theory and characteristic classes. In this volume of the Encyclopaedia, the authors give a tour of the principal areas and methods of modern differential geometry. The book is structured so that the reader may choose parts of the text to read and still take away a completed picture of some area of differential geometry Beginning at the introductory level with curves in Euclidean space, the sections become more challenging, arriving finally at the advanced topics which form the greatest part of the book:transformation groups, the geometry of differential equations,geometric structures, the equivalence problem the geometry of elliptic operators, G-structures and contact geometry. As an overview of the major current methods of differential geometry, EMS 28 is a map of these differen
本书提供给读者一个对复分析的深刻理解以及这门学科是如何融入数学的。 该书是从伊利诺伊大学香槟分校的校园荣誉计划中的讲座发展起来的。这些课程的目标是让学生体会到当以复分析的观点对待许多数学和物理问题时,问题便被神奇地简化了。此书从初等的水平出发,但也包含了高级的材料。 本书的前四章给出了对复分析及其许多初等但非寻常应用的一个导引,第5 到第7 章发展了Cauchy理论,包括一些引人注目的对于微积分的应用。第8 章则探讨了一些吸引人的论题,使全书连成一个有机的整体并对深入研究打开了大门。 280 个习题囊括了从简单计算到难解之题。这种多样性使得此书独具吸引力。 只阅读前四章的读者将能够在初等情形中应用复数。研读整本书将能了解基本的单复变论并将目睹它作为一个整体融合进数学中。数学研究工作者也会发
离散几何有着150余年的丰富历史,提出了甚至高中生都能理解的诸多公开问题。某些问题异常困难,并和数学其他领域的一些深层问题密切相关。然而,许多问题,甚至某些年代久远的问题,都可能被聪明的大学本科生或者高中生运用精妙构思和数学奥林匹克竞赛中的某些技巧所解决。 《离散几何中的研究问题》是由Leo Moser牵头,花费25年著成,书中包括500余个颇具吸引力的公开问题,理解其中许多问题并不需要太多的准备知识。书中的各章很大程度上内容自含,概述了离散几何,介绍了各个问题的历史细节及重要的相关结果。 本书可作为参考书,供致力数学研究,热爱美妙数学问题并不遗余力地试图加以解决的那些专业数学家和研究生查阅。 本书的显著特色包括: 500多个公开问题,其中某些问题的历史久远,而某些问题为新近提出且从未出版;