庄楚强、何春雄编*的《应用数理统计基础(第4 版)》介绍经典的数理统计理论与方法,内容包括初等概率论知识的复习、抽样分布、参数估计、假设检验、方差分析和试验设计,还简要介绍数据挖掘及统计学习、R软件等较为现代的统计方法和工具。书中有较多例题并附有例题求解的R软件参考程序,各章配有习题,书末附有习题答案。 《应用数理统计基础(第4版)》适用于了解概率论基础知识和具有使用计算机软件基本经验的读者阅读。可作为高等院校非数学专业硕士研究生数理统计课程的参考教材,也可供在自然科学、管理科学、社会科学、经济与金融科学等诸多研究领域中用到统计科学的科研工作者参考。
由于 概率论与数理统计 既有明显而广泛的应用背景,又有严密的理论分析,初学者往往难以理解和掌握,诸如互不相容、独立和等可能性等条件往往都隐含在问题的叙述中,导致学生往往觉得掌握了基本理论和方法,但解题时又觉得无从下手.本书与《概率论与数理统计》(何春雄等编,2012年2月版)的教材配套,每章都分基本内容、基本要求、基本知识提要、疑难分析、典型例题选讲及习题详解等6部分编写,以期帮助学生既掌握基本概念、基本理论和方法,又具有运用该课程知识解决有关实际问题的能力。主要内容包括:事件与概率;变量与概率分布;向量及其分布;变量的数字特征;大数定律与中心极限定理。
《博学·经济学系列:统计学原理(第7版)》共分八章,即绪论、统计调查与整理、综合指标、动态数列、统计指数、抽样调查、相关与回归分析、国民经济核算。这次修订,主要对各章的练习题作了调整和增补,改写了第五章、第六章、第七章、第八章,同时对书中的统计资料作了更新。前六版受到读者的广泛好评。 《博学·经济学系列:统计学原理(第7版)》的特点是实用、简明,每章后有练习题并附有习题解答。 《博学·经济学系列:统计学原理(第7版)》适合各大专院校经济、管理、金融等专业师生。
是一部现代数学名著,一直受到数学界的推崇。作为Rudin的分析学经典著作之一,本书在西方各国乃至我国均有着广泛而深远的影响,被许多高校用做数学分析课的必选教材。本书涵盖了高等微积分学的丰富内容,最精彩的部分集中在基础拓扑结构、函数项序列与级数、多变量函数以及微分形式的积分等章节。第3版经过增删与修订,更加符合学生的阅读习惯与思考方式。 本书内容相当精练,结构简单明了,这也是Rudin著作的一大特色。 与其说这是一部教科书,不如说这是一部字典。
本书是俄罗斯代数学家A.N.柯斯特利金的教材《代数学引论》的第三卷。《代数学引论》是作者总结了在莫斯科大学几十年来代数课程的教学经验而写成的,全书分成三卷《卷:基础代数,第二卷:线性代数,第三卷:基本结构》,分别对应于莫斯科大学数学力学系代数教学的三学期的内容。作者在书中把代数、线性代数和几何统一处理成一个教程,并力图把本书写成有利于培养学生创造性思维的教材。书中配置了难度不同的大量习题。并向学生介绍一些专题中尚未解决的问题。 第三卷的内容包括群论的一些基本理论,群的结构。表示论基础,环、代数与模。伽罗瓦理论初步。 本书可供我国高等院校数学、应用数学专业和相关专业的学生、教师用作代数学课程的教学参考书。也可用作硕士研究生的基础代数教材或教学参考书。
近些年随着技术的快速发展,多组学数据越来越广泛地应用在了生物及医学研究领域,这些丰富的实验数据成为了精准医疗的重要支撑,但同时也给统计学家提出了严峻的考验,如何处理分析这些数据成了重要的研究课题。本书主要面向复杂疾病中产生的复杂数据进行统计建模和计算,有效整合多组学数据 ,对复杂疾病的机理认识和风险预测具有重要的意义。本书结构合理、概念清晰,可作为对统计遗传、生物统计等方面感兴趣的研究人员的学习资料。
本书是一部概述世界各个国家和地区情况的中型综合性工具书。本书较全面、系统地展示了世界225个国家和地区的自然和社会,历史和现状,政治和经济,科学和技术,文化和宗教,民族和民俗,语言和文字,城市和旅游等诸方面情况。它以翔实的资料,可靠的数据,生动的论述和新的信息及时地反映了世界各个国家和地区的发展变化。
从数学的整体把握、教学的整体把握、学生的整体把握等三个基本维度展开。在整体分析中,目的是让教师抓住该单元内容的数学本质,使教师在教学时能定位准确,教学最重要的就是要突出重点,对于重点内容,都要千方百计地让学生掌握,对于细枝末节的非本质内容,没有必要花费太多的时间和精力。
《大学数学:概率论与数理统计(第二版)》注重体现工程实际应用背景且注意为现代概率论与数理统计新知识留有接口,同时精简、压缩一些传统内容,淡化计算技巧的训练,加强理论基础的培养;重新组织、精选了例题及习题,使之更有利于培养工科学生利用概率统计方法解决和分析工程实际问题。 《大学数学:概率论与数理统计(第二版)》内容包括随机事件与概率、条件概率与独立性、随机变量及其分布、多维随机变量及其分布、随机变量的数字特征与极限定理、数理统计的基本概念、参数估计、假设检验、单因素试验的方差分析及一元正态线性回归等九章,前6章配备了拓展例题,对其理论与方法作适当的加深和拓广。附录介绍了如何使用MATLAB软件处理概率统计问题。《大学数学:概率论与数理统计(第二版)》适合本科院校工科各专业学生使用,
本书系统地介绍了抽象代数这一重要数学分支的最基本的内容,其中包括群论、环论与域论。在域论这一章中还比较全面地介绍了有限Galois理论,书中还配备了数量、难易程度不一的习题,习题均有解答或提示,书后有附录。 本书可供综合性大学、师范大学数学系学生阅读,可作为教材,亦可供理科各系以及信息、通讯工程专业的大学生、研究生及老师参考。
《微积分中的典型例题分析与习题(第2版)》作为 面向21世纪课程教材 《高等学校经济管理学科数学基础:微积分(第三版)》的配套辅导书,由主教材作者编写。为帮助读者系统地学习和掌握微积分的主要内容和基本方法,每章包括内容要点,典型例题解析以及习题A、B、c,书末附有习题参考答案与提示。习题A是与各章节内容相配合的基本题与综合题,习题B是有一定难度的基本题与综合题,习题C是选择题。《微积分中的典型例题分析与习题(第2版)》不仅适合于经济管理各学科本科生的学习需要,对于有志考研的读者,《微积分中的典型例题分析与习题(第2版)》也不失为一本很有价值的复习用书。
本书针对“离散数学”有关教材中集合论、代数系统、图论和数理逻辑四大部分的内容,分为十章进行编排。按照基本知识点、问答与论证、解题思路与方法三个层次.由浅人深地编入了359个具有代表性的例题。解答详实,注重基本概念的理解、分析能力的培养和逻辑思维的训练。 本书可供高等院校计算机及有关专业本、专科师生作为离散数学课程的教学和学习参考书,也是离散数学自学者的良好辅导资料。
《吉米多维奇数学分析习题集题解5(第3版)》四千多道习题,数量多,内容丰富,由浅入深,部分题目难度大。涉及的内容有函数与极限,单变量函数的微分学,不定积分,定积分,级数,多变量函数的微分学,带参变量积分以及重积分与曲线积分、曲面积分等等,概括了数学分析的全部主题。当前,我国广大读者,特别是肯于刻苦自学的广大数学爱好者,在为四个现代化而勤奋学习的热潮中,迫切需要对一些疑难习题有一个较明确的问答。有鉴于此,我们物约作者,将全书4462题的所有解答汇辑成书,共分六册出版。本书可以作为高等院校的教学参考用书,同时也可作为广大读者在自学微积、分过程中的参考用书。
本书深入浅出地介绍了凸图形及凸多面体的理论,注重基本概念和基本方法的阐述,论证限制在初等数学范围之内。阅读本书,不仅可使读者在中学阶段学习的几何知识大为充实和丰富起来,而且对读者以后学习高等数学,如多元函数微积分、微分几何、线性代数、拓扑学等,奠定空间想象能力和逻辑思维能力的坚实基础。
《时间序列与预测(英文版)(第2版)》是时间序列领域的名著。特色在于注重实际应用。深浅适中,适用面广,示例和习题丰富,有微积分、线性代数和统计学基础知识即可阅读。书中全面介绍了经济、工程、自然科学和社会科学中所用的时间序列和预测方法,核心内容是平稳过程、ARMA模型和ARIMA模型、多元时间序列和状态空间模型、谱分析。书中配有时间序列软件包ITSM2000学生版,更加方便读者学习。
本书是为应用数学专业的硕士生和高年级本科生所编写的一本教材。主要包括定性理论、稳定性理论和分支理论三个部分。内容着眼于应用的需要,取材精练,注意概念实质的揭示、定理思路的阐述、应用方法的介绍和实际例子的分析,并配合内容引入了计算机软件。章后附有习题。 本书可作为理工科专业研究生的教材和高年级本科生的选修课教材,也可供相关的科学技术人员参考。
本书针对“离散数学”有关教材中集合论、代数系统、图论和数理逻辑部分的内容,分为十章进行编排。按照基本知识点、问答与论证、解题思路与方法三个层次.由浅人深地编入了359个具有代表性的例题。解答详实,注重基本概念的理解、分析能力的培养和逻辑思维的训练。 本书可供高等院校计算机及有关专业本、专科师生作为离散数学课程的教学和学习参考书,也是离散数学自学者的良好辅导资料。
本书起点低,但内容丰富,包括了现代数论的基本知识,如:椭圆曲线、p进数、代数数域、局部—整体方法等。该书的主要目标是证明数论的之一:类域论。在以往的数论书籍中,代数数论、椭圆曲线、类域论是分开的三本书,但本书在有限的篇幅内,将三者巧妙地融为一体,使读者能很快地达到数论的一个。开篇通过介绍Fermat的工作,给出了现代数论的一些定理的背景和意义。对于初学者难以掌握的类域论,专门有一章介绍类域论的背景和主要定理的意义。类域论的主要定理通过应用(函数计算Brauei-群而得到证明。本书的另一特点是先承认一些结论,然后推导出一些进一步的结果,而将它们的证明放在一起一个一个地进行。 本书的第零章通过介绍:Fermat的工作和结果,从而窥见丰富的、深奥的数的世界。章以Fermat的工作为起点,介绍椭圆曲线的基本知识。第
相同的知识,不同的学法,如果你还在为学习数学而头疼,请你翻开它。《数学之谜》集趣味性和知识性于一体,以故事的形式为你解答学习和生活中遇到的数学难题。故事中的数学趣闻、童话中的数学之谜,生活中的数学难题,将数学与我们的生活生动形象地展现出来,带你走出课堂上枯燥乏味的数学包围圈,让你重新认识趣味横生的数学知识,爱上数学。
本书揭开趣味游戏、艺术设计和日常生活中的数学密码,通过新颖话题和精美图示展现算术与几何中隐藏的妙趣,从最简单的数学原理走入算法的精彩世界,展现算法破解数学谜题的无穷威力。本书适合所有数学爱好者阅读。
《人文数学导引》不是以数学学科的具体知识的简本形式来讲授数学,而是努力去展示数学丰富的人文内涵,以数学思想和数学精神为主线,通过数学故事、数学人物、数学问题、数学方法、数学应用、数学史与数学之谜等等丰富而又多样的材料,用生动而又不失深度的叙述,把读者带入动人的数学与人文学科交相辉映的景色中。 《人文数学导引》的叙述跨越了学科的界限,不论原来是文科还是理工科背景的读者,都会感到有突破学科疆界的新颖之处,而产生对自己的知识结构进行新的整合的愿望。在轻松愉快的阅读中,经历智慧与思想的漫游。 《人文数学导引》适合文理工各专业的学生、教师作为教材或参考书,也适合所有对数学与文学科的关系感兴趣的读者阅读。