《深入浅出统计学》具有 深入浅出系列 的一贯特色,提供符合直觉的理解方式,让统计理论的学习既有趣又自然。从应对考试到解决实际问题,无论你是学生还是数据分析师,都能从中受益。本书涵盖的知识点包括:信息可视化、概率计算、几何分布、二项分布及泊松分布、正态分布、统计抽样、置信区间的构建、假设检验、卡方分布、相关与回归等等,完整涵盖AP考试范围。本书运用充满互动性的真实世界情节,教给你有关这门学科的所有基础,为这个枯燥的领域带来鲜活的乐趣,不仅让你充分掌握统计学的要义,更会告诉你如何将统计理论应用到日常生活中。
这本经典的概率论教材通过大量的例子系统介绍了概率论的基础知识及其应用,主要内容有组合分析、概率论公理、条件概率、离散型随机变量、连续型随机变量、随机变量的联合分布、期望的性质、极限定理和模拟等,内容丰富,通俗易懂.各章末附有大量的练习,分为习题、理论习题和自检习题三大类,并在书末给出自检习题的全部解答。 本书是概率论的入门书,适合作为数学、统计学、经济学、生物学、管理学、计算机科学及其他各工学专业本科生的教材,也适合作为研究生和应用工作者的参考书。 2步获取导学视频: ①微信视频号关注 IT阅读排行榜 ②点击 直播回放 栏,上滑寻找
本书是一本非数学专业主要是文科及艺术类专业的数学教材,讲述方式活泼,案例贴近生活,读者可以在轻松学习中体会数学乐趣和意义。全书分为三大部分:归纳和演绎、逻辑和数;代数和几何;概率统
本书是一部经典的*过程著作,叙述深入浅出、涉及面广。主要内容有*变量、条件期望、马尔可夫链、指数分布、泊松过程、平稳过程、更新理论及排队论等,也包括了*过程在物理、生物、运筹、网络、遗传、经济、保险、金融及可靠性中的应用。特别是有关*模拟的内容,给*系统运行的模拟计算提供了有力的工具。zui新版还增加了不带左跳的*徘徊和生灭排队模型等内容。本书约有700 道习题,其中带星号的习题还提供了解答。本书可作为计算机科学、保险学、社会科学、生命科学、管理科学与工程等专业*过程基础课教材。
由美国当代著名统计学家L.沃塞曼所著的《统计学完伞教程》是一本几乎包含了统计学领域全部知识的优秀教材,本书除了介绍传统数理统计学的全部内容以外,还包含了Bootstrap方法(白助法)、独立性推断、因果推断、图模型、非参数同归、正交函数光滑法、分类、统计学理论及数据挖掘等统计学领域的新方法和技术.本书不但注重概率论与数理统计基本理论的阐述,同时还强调数据分析能力的培养.本书中含有大量的实例以帮助广大读者快速掌握使用R软件进行统计数据分析。
本书源自的哈佛统计学讲座,介绍了帮助读者理解统计方法、随机性和不确定性的基本语言和工具,并列举了多种多样的应用实例,内容涉及偶然性、悖论、谷歌的网页排名算法(PageRank)及马尔可夫链蒙特卡罗方法(MCMC)等。本书还探讨了概率论在诸如基因学、医学、计算机科学和信息科学等领域的应用。全书共分13章,分别介绍了概率与计数、条件概率、随机变量及其分布、期望、连续型随机变量、矩、联合分布、变换、条件期望、不等式与极限定理、马尔可夫链、马尔可夫链蒙特卡罗方法、泊松过程等内容。用容易理解的方式来呈现内容,用实例来揭示统计学中基本分布之间的联系,并通过条件化将复杂的问题归约为易于掌控的若干小问题。书中还包含了很多直观的解释、图示和实践问题。每一章的结尾部分都给出了如何利用R来完成相关模拟和计算的方法。
全书采用一种统一方式加以讨论,即首先对生成可用数据的抽样过程进行设定,并考察仅利用实证证据时,探讨了解认识总体参数的情况,然后研究倘若在施加各种各样的假设条件下,这些参数的集值识别域会如何缩小。所用的推断方法是传统的且完全非参数的方法。
随着现代科学技术的飞速发展,许多科学研究领域产生了多种复杂数据,复杂数据的统计建模涵盖了许多当代统计分支,推动了当代统计学理论方法的进步与发展,并且其应用层面几乎涉及各领域。具有复杂分层结构的数据在现实生活中很普遍。能完全剖析这类数据,发掘该类数据表象下的潜在规律性对于统计学等科研领域很有意义。本书致力于介绍复杂分层数据分析前沿知识,侧重于系统的理论与算法介绍。内容主要涉及线性分位回归、非参数分位回归、适应性分位回归、可加性分位回归、变系数分位回归、单指数分位回归、分位自回归、复合分位回归、高维分位回归以及贝叶斯分位回归、分层样条分位回归、分层线性分位回归、分层半参数分位回归、复合分层线性分位回归以及复合分层半参数分位回归,等等。
本书阐述有不等式约束的参数估计和假设检验的方法和理论,及其在小一乘估计和随机序检验等方面的应用。本书把数学规划的方法和思想用到数理统计中,使得可解决的统计问题的范围进一步扩大。
本书是“All of Nonparametric Statistics”的中译本,源于作者为研究生开设的课程讲义,包括了几乎所有的现代非参数统计的内容。这种包罗万象的书不但国内没有,在国外也很难找到本书。主要包括10章内容,主要讲述非参数delta方法和自助法之类的经验CDF,覆盖基本的光滑方法和正态均值、利用正交函数的非参数推断、小波和其他的适应方法等。 本书是“All of Nonparametric Statistics”的中译本,源于作者为研究生开设的课程讲义,包括了几乎所有的现代非参数统计的内容。这种包罗万象的书不但国内没有,在国外也很难找到本书。主要包括10章内容,主要讲述非参数delta方法和自助法之类的经验CDF,覆盖基本的光滑方法和正态均值、利用正交函数的非参数推断、小波和其他的适应方法等。
《统计理论》是一部经典的讲述统计理论的研究生教程,综合性强,内容涵盖:估计;检验;大样本理论,这些都是研究生要进入博士或者更高层次必须学习的预备知识。为了让读者具备更加强硬的数学背景和更广阔的理论知识,书中不仅给出了经典方法,也给出了贝叶斯推理知识。目次:概率模型;充分统计量;决策理论;假设检验;估计;等价;大样本理论;分层模型;序列分析;附录:测度与积分理论;概率论;数学定理;分布概述。 读者对象:概率统计、数学专业以及相关专业的高年级本科生、研究生和相关的科研人员。
《概率论札记》是作者的 工程数学系列札记 的第四本。前三本分别是《矢算场论札记》(2007)、《复变函数札记》(2011)、《矩阵论札记》(2014)。尽管四本书所涉及领域完全不同,但却有着完全一致的目标,即想建立某种工程数学类型,使读者能自如跨越数学与工程之间的桥梁。 《概率论札记》的核心主题是概率,研究的目标是*事件的统计规律。用一句话概括,即*事件反映单体的不可预洲性,而统计规律反映群体的频率稳定性。 《概率论札记》包括慨率论基础、*量分布和数字特征、大数定律、抽样分布到统汁回归等。书中讨论了慨率论的应用实例,丰富的附录可以给广大工程技术人员带来很大的方便。 《概率论札记》适合广大理工科本科生、硕士和博士研究生学习使用。还可以作为相关专业科技与工程技术人员的入门读物和工具书。
哈罗德·杰弗里(SirHaroldJeffreys,1891~1989年),是英国剑桥大学已故著名物理学家兼应用数学家,他在20世纪30年代相继写出两本著作,即《科学推断》和《概率论》,它们对近几十年来贝叶斯学派的重新兴起有重要作用,值得一读。这本《概率论》侧重对科学方法论主要原则的阐述,旨在为读者提供一种在实践中可以应用、能根据观测数据进行推断而自洽的推理方法。为发展概率论,杰弗里在书中提出六条公理(公理7实为定理9所述乘积规则的推广)、三条约定;还为归纳推理中重要的部分,即根据过去的经验预测未来,提出了八条管辖原则,由此深刻论证了“从经验和数据中获取知识”乃是贝叶斯分析的实质这一观点;杰弗里在本书中还发展了K.皮尔逊的思想,强调“科学的一致性在于其方法而非其内容”,在当代各种新知识、新学科层出不穷的背景下,坚持这一
这本经典的概率论教材通过大量的例子介绍了概率论的基础知识及其应用,主要内容有组合分析、概率论公理、条件概率、离散型变量、连续型变量、变量的联合分布、期望的性质、极限定理和模拟等,内容丰富,通俗易懂.各章末附有大量的练习,分为习题、理论习题和自检习题类,并在书末给出自检习题的解答. 本书是概率论的入门书,适合作为数学、统计学、经济学、生物学、管理学、计算机科学及其他各工学本科生的教材,也适合作为研究生和应用工作者的参考书.
《试验设计及其优化》从技术与应用观点出发,重点阐述了试验设计及其数据处理的优良化方法和各种分析技术,以进一步提升试验设计的水平及其优化的成效。 全书共分11章,除介绍试验设计的基本原理、常用方法外,还介绍了试验设计的全新方法、全新研究成果及应用实例。此外,还介绍了试验设计的常用统计软件。 《试验设计及其优化》可作为理、工、农、医、经济、管理等专业本科生的教学用书,也可供科研人员、工程技术人员、设计人员、实验人员、营销人员和管理人员参考。
本书针对学习过初级微积分以及概率论与统计学预备课程的高年级大学生或刚入学的研究生。不要求正式学习过概率论。章回顾了本书所需要的关于概率论和微积分的知识。 本书着重讲述了概念的开发,并通过生产、金融和操作领域的应用说明了这些概念。本书扩展了《运筹学——应用范例与解法》中所讲述的概率模型,并更加综合地介绍了一些流行的概念。本书应该适用于下列课程: 企业管理学系、运筹学系、数学系、商业学校,以及雇主财务计划中提供的概率论模型或过程中的课程。 运筹学系列中的第二门课程。 为导引性课程提供足够材料的财务工程学中的课程。