本书系统介绍变分分析的基本理论,讨论变分分析在最优化理论与算法分析中所起的基础性作用.变分分析部分包括宇窗空间与锥、集值映射、集合的变分几何、函数的广义微分、单值函数的Lipschitz 性质和集值映射的Aubin 性质、隐函数定理与系统稳定性.最优化理论部分包括最优性理论(含有Lipschitz 函数优化的Clarke 乘子原则以及均衡约束数学规划问题的最优性条件)、非线性规划的扰动分析、二阶锥的变分分析与二阶锥约束优化问题的扰动分析,以及半正定矩阵锥的变分分析与半定规划问题的扰动分析.最优化的算法部分包括Newton 方法和邻近点方法,邻近点方法部分介绍Moreau 包络、等式约束的非线性规划问题、非线性二阶锥约束优化问题与非线性半定规划问题的增广Lagrange 方法的收敛速度等.
本书是解放军信息工程大学信息工程学院参加全国大学生数学建模竞赛获奖论文的第二卷,主要是从该院2006~2011年获全国一等奖的论文中精选出的18篇优秀论文编辑整理而成,同时收录了本书主编作为命题人撰写的两篇评述文章,即共收录20篇论文,截至2011年解放军信息工程大学信息工程学院在全国大学生数学建模竞赛中获得一等奖40多项,二等奖50多项,其中第一卷收录19篇,本卷收录的论文都是从近6年中获奖论文中精选出来的有创造性和代表性的优秀论文。每篇论文都按照竞赛论文的写作要求,包含论文的摘要、问题的重述、问题的分析、模型的假设与符号说明、模型的建市与求解、模型的分析与检验、模型的评价与改进方向等内容,基本保持了参赛论文的原貌,在每篇论文后面编者都给出了简要的点评。最后,在附录中给出了2006~2011年全国大学生数学建模竞
"Stochastic optimization in continuous time"(AuthorFwu-RanqChang)is a rigorouut user-friendly book on the application ofstochastic control theory to economics. A distinctive feature ofthe book is that math-ematical concepts are introduced in alanguage and terminology familiar to graduate students ofeconomics.
整数规划是运筹学与化理论的重要分支之一,整数规划模型、理论和算法在管理科学、经济、金融工程、T业管理和其他领域有着广泛的应用,本书主要介绍经典的线性整数规划理论和算法,同时简单介绍近年发展起来的非线性整数规划理论,主要内容包括:线性和非线性整数规划问题和模型、线性规划基础、全单模矩阵、图论和网络流问题、算法复杂性理论、分枝定界算法、割平面方法、多面体和有效不等式理论、整数规划对偶理论、0-1二次整数规划与SDP松弛、0-1多项式整数规划等。 本书适合运筹学、管理科学、应用数学和工程类专业的高年级本科生和研究生作为整数规划的教材和参考书,读者只需具有高等数学基础就可以阅读。
本书共分17部分,介绍了完全信息博弈、混合策略均衡、完全信息展开型博弈:理论;联盟博弈及其核心、完全信息展开型博弈:延伸与讨论、不完全信息展开型博弈、演化均衡等内容。本书对博弈论进行了严谨而又通俗的介绍,是适用于高年级本科生和研究生的入门。