三角形和四边形是平面几何中简单的多边形,是平面几何中*基本的图形。本书全面、系统地介绍了一般三角形、四边形与特殊三角形、四边形以及三角形、四边形之间的基本性质,列举了大量的竞赛题说明这些性质的应用,并且介绍了非三角形、四边形问题如何转化为三角形、四边形问题加以解决,其中不少内容是作者多年从事数学竞赛教学和研究的体会与总结。同时,本书也是在高中阶段继续参与数学竞赛活动的基本读本。每一单元配有一定量的练习题,供读者进行实战训练。本书对提高数学竞赛的水平有很大帮助。
《高中数学联赛备考手册(预赛试题集锦)》由中国数学会数学竞赛委员会组稿,各省区市数学会联合编写,自2009年起,至今已出版16本。本书收录了2024年各省区市预赛试题及全国联赛试题和优秀解答,预赛命题人员大多为各省市数学会成员,试题在遵循现行教学大纲,体现新课标精神的同时,在方法的要求上有所提高。命题人员大多同时兼任各省市高考命题工作,试题对高考有一定的指导作用,本书架起了联赛、强基和高考的桥梁,是一本不可或缺的备考手册。
《新编奥数精讲与测试》丛书是在之前基础上全新改版的,它根据学生的认知程度和在校的学习进度将 奥数 的内容进行了有序的编排,并以精讲和测试的形式有机地结合起来,为学生提供了一套强化知识、提高数学素养和能力的教材。学生通过对这套教材的学习,不仅能有效提高课内成绩,而且能大幅提升参加各级各类数学竞赛的能力,为取得理想成绩奠定基础。本书的每一讲都包含以下三部分内容:1. 知识要点 ;2. 典例精讲 ;3. 水平测试ABC 。加本套丛书编写的作者都是长期在数学竞赛辅导*线的富有经验的教师,其中有中国数学奥林匹克国家队的领队、副领队、主教练,还有多次参与各级各类数学竞赛命题的专家学者,他们丰富的教学经验为本套丛书增色不少。
从宏观知识内容来说,数学可分为代数和几何两部分,中学几何主要包括平面几何、立体几何和解析几何。应该说平面几何是学好立体几何和解析几何的基础。建议读者在阅读本书时,先阅读例题部分,熟悉并掌握一些基本定理、基本结论、基本图形,这是解决课后习题的基础。同时希望读者在做习题之前,先养成独立思考的良好习惯,不要急于翻看解答。另外,课后习题中有部分问题不出现图形,目的是培养读者自己画图的能力,准确作图也是平面几何解题的一个重要环节,希望读者不可忽视。平面几何有不少问题准确作图后,往往就迎刃而解了。本书是在原版基础上作了一些修改,考虑到圆的内容相当丰富,新版书中拆分成两章,并添加了不少近五年全国高中数学联赛及各省高联选拔赛的新题。本书力求涵盖平面几何的所有重要知识点,但由于篇幅有限,不可
本书涵盖了绝大部分平面几何基本定理和基础知识,包括基本定理,圆,完全四边形,极点、极线和调和点列,三角形的五心以及几何变换等内容。每章都按照定理 逆定理 变式和特例 拓展来组织,从而让读者能够全面地了解和掌握知识点,并串起知识点。本书适合参加数学竞赛的中学生使用,可作为高中数学联赛平面几何模块的基础教程,也可供中学数学教师、数学竞赛教练参考。
解析几何的基本思想是利用坐标方法把几何问题化为代数问题,通过代数问题的研究来解决几何问题。全书共九章,例题约240道、练习题165道及其解答。通过学习这些内容,有助于拓展学生的视野,有助于培养学生的逻辑思维能力,提高分析问题、解决问题的能力。
本书是由《数学思维训练导引》修订而来,与《高思学校竞赛数学课本》一起构成了“新概念奥林匹克数学丛书”。该丛书是小学奥数的很好篇,本次修订对书中所有的题目进行了详细解答,适合前1%-10%的优秀学生使用,适合较高层次的奥数培训班使用。本书是高思教育团队多年教育经验的集成,作者团队年轻而强大,其中既有徐鸣皋老师这样的超常儿童教育专家,也有邹瑾老师这样的国际数学奥林匹克金牌得主,更多作者信息,请登录网站查询。本书通过“横向”和“纵向”两个维度构建了小学数学竞赛完备的知识体系。其中横向分为七大专题:计算、几何、应用题、计数、数论、数字谜以及组合数学,而纵向则按照学生接受能力和校内课程进度,将七大专题分配到3、4、5、6四个年级中。这就形成了一套循序渐进的学习计划和教学大纲,能够满足小学阶段全国主
不等式作为工具,被广泛地应用到数学的各个领域。不等式的证明是高考和数学竞赛中的热点。不等式的形式多种多样,证明方法也是灵活多变,它常常和许多内容相结合,所以具体问题具体分析是证明不等式的精髓。本书通过一些经典的例子来介绍证明不等式的一些方法与技巧,其中一些方法是作者解题的体会和心得,供读者参考。