《SQL即查即用》从实用角度出发,由浅入深地讲解了SQL的基本概念、常用语法和操作技术。全书共24章,包括数据的简单查询、条件查询、模糊查询、过滤数据以及数据排序、分组、统计等内容,还包括子查询、多表连接、数据的增删改查、视图、存储过程、游标、事务处理以及数据库和数据表的管理等高级技术。包括200多个SQL语法,200多个应用示例。有很强的实用性和可操作性,既适合作为SQL初学者的学习用书,又适合作为程序开发人员和数据库管理人员随时查阅的参考工具书。为便于读者对SQL语法的理解,书中所有知识点和语法都结合具体示例进行讲解,并以对比图方式鲜明直观地展示数据变化,帮助读者快速掌握实际操作技巧,学以致用。书中还设置了注意、说明、常见错误、多学两招等贴心栏目,及时指出注意事项并给出相应的解决方案,帮助读者避开学
本书共分为5章,系统全面地介绍了MATLAB的基本知识和用法,包括:MATLAB基础简介、向量与矩阵运算、绘图、符号计算、程序设计。本书将MATLAB软件应用于数学、信息与计算科学专业的学习和研究中,解决相关课程中的科学计算、图形绘制、数值模拟与仿真等问题,提高科学计算与研究的效率,使读者具备利用MATLAB软件进行计算机处理、解决实际问题的能力。 本书读者对象为需要数学建模、学术研究分析、理论验证、图形仿真的各专业大学生、研究生,以及教师和科研人员。
本书展示了如何验证自己的设想、找到真正的客户、打造能赚钱的产品,以及提升企业知名度。30多个案例分析,全球100多位知名企业家的真知灼见,为你呈现来之不易、经过实践检验的创业心得和宝贵经验,值得每位创业家和企业家一读。 深入理解精益创业、数据分析基础,和数据驱动的思维模式 如何将六个典型的商业模式应用到各种规模的新企业 找到你的关键指标 确定底线,找到出发点 在大企业中应用精益分析,打造新产品
本书内容分为八章,基本涵盖了目前较为常用的数据科学建模方法,包括现在热门的深度学习。书中不仅介绍模型的理论基础,还以大量案例结合现实数据为读者展示了数据分析中常见任务的处理流程,如分类、回归、聚类、推荐、图片识别等,帮助读者应用这些模型和方法解决实际问题。 第1章首先对数据科学的任务和重要性进行了概述,接着介绍数据科学的建模流程以及Python语言开发环境与常用库; 第二章介绍了回归模型,包括线性回归和逻辑回归模型; 第三章介绍了聚类模型,包括k-means算法、DBSCAN算法和DIANA算法; 第四章介绍了关联规则分析,包括Apriori算法和FP-Growth算法; 第五章介绍了决策树模型,包括ID3、C4.5和CART算法及树的剪枝方法; 第六章介绍了支持向量机,包括线性和非线性支持向量机以及向量机的求解与多分类问题; 第七章介绍
本书是目前有关数据挖掘在数据化运营实践领域比较全面和系统的著作,也是诸多数据挖掘书籍中为数不多的穿插大量真实的实践应用案例和场景的著作,更是创造性地针对数据化运营中不同分析挖掘课题类型,推出一一对应的分析思路集锦和相应的分析技巧集成,为读者提供“菜单化”实战锦囊的著作。作者结合自己数据化运营实践中大量的项目经验,用通俗易懂的“非技术”语言和大量活泼生动的案例,围绕数据分析挖掘中的思路、方法、技巧与应用,全方位整理、总结、分享,帮助读者深刻领会和掌握“以业务为核心,以思路为重点,以分析技术为辅佐”的数据挖掘实践应用宝典。全书共19章,分为三个部分:基础篇(~4章)系统介绍了数据分析挖掘和数据化运营的相关背景、数据化运营中“协调配合”的核心,以及实践中常见分析项目类型;实战篇(第6~
本图书注重数字化转型的根本任务、核心路径、关键驱动要素。从价值体系优化、创新和重构,新型能力建设,数据要素驱动提出系统化推进数字化转型的一整套参考架构,提出能力单元的模型及建设要点,具有系统性、针对性、可执行性,具有很高的应用价值。本图书从按照价值体系优化、创新和重构的要求提出数字化转型的主要视角,以新型能力建设为主线提出数字化转型的过程方法,围绕数据要素驱动作用的逐步发挥提出数字化转型的发展阶段要求,构建一套数字化转型参考架构,从而支持相关各方更加系统化、体系化、全局化推进数字化转型这一复杂巨系统工程。 本图书面向开展数字化转型的企业及提供数字化转型服务的各类组织。