SQL是使用*广泛的数据库语言,绝大多数重要的 DBMS 支持 SQL。本书由浅入深地讲解了SQL的基本概念和语法,涉及数据的排序、过滤和分组,以及表、视图、联结、子查询、游标、存储过程和触发器等内容,实例丰富,便于查阅。新版对书中的案例进行了全面的更新,并增加了章后挑战题,便于读者巩固所学知识。
本书是一本基于 Python 实现全部例题计算的统计学教材,书中例题解答均给出了详细的实现代码和结果。全书共 11 章,第1章和第2章介绍数据、Python 的下载与安装、Python的数据类型和基本操作、Python 绘图基础等。第3章和第4章介绍数据的描述性分析方法,包括数据可视化和描述统计量。第5~7章介绍数据的推断性分析方法,包括概率分布、参数估计和假设检验。第8~11章介绍实际中常用的一些统计方法,包括类别变量分析、方差分析、回归分析、时间序列分析等。 本书可作为高等院校各专业开设统计学课程的教材,也可作为数据分析工作者、Python 数据分析和可视化爱好者的参考书。
本书是畅销书《SQL基础教程》第2版,介绍了关系数据库以及用来操作关系数据库的SQL语言的使用方法。书中通过丰富的图示、大量示例程序和详实的操作步骤说明,让读者循序渐进地掌握SQL的基础知识和使用技巧,切实提高编程能力。每章结尾设置有练习题,帮助读者检验对各章内容的理解程度。另外,本书还将重要知识点总结为 法则 ,方便读者随时查阅。第2版除了将示例程序更新为对应*的DB的SQL之外,还新增了一章,介绍如何从应用程序执行SQL。
本书由一线数据分析师精心编写,通过大量案例介绍了数据分析工作中常用的数据分析方法与工具。本书包括5章内容,分别是数据分析入门、数据分析 从玩转Excel开始、海量数据管理 拿MySQL说事儿、数据可视化 Tableau的使用、数据分析进阶 Python数据分析。本书通俗易懂、通过大量贴近企业真实场景的案例,帮助读者在提高数据处理技能的同时加深对数据分析思维的理解。 本书适合有志于从事数据分析工作或已从事初级数据分析工作的人士自学,也可作为产品经理、运营人员、市场人员、对数据分析感兴趣的企业高管以及创业者的参考用书。
《数据库系统概念》是数据库系统方面的经典教材之一,其内容由浅入深,既包含数据库系统基本概念,又反映数据库技术新进展。本书基于该书第7版进行改编,保留其中的基本内容,压缩或删除了一些高级内容,更加适合作为国内高校计算机及相关专业本科生数据库课程教材。
本书从数据库角度全面系统地介绍数据挖掘的概念、方法和技术以及技术研究进展,并重点关注近年来该领域重要和 新的课题——数据仓库和数据立方体技术,流数据挖掘,社会化网络挖掘,空间、多媒体和其他复杂数据挖掘。本书是数据挖掘和知识发现领域内的所有教师、研究人员、开发人员和用户都的一本书。
本书从Power BI的基础功能讲起,逐步深入到Power BI进阶实战,以系统化的实操步骤和丰富的实际案例让读者快速入门Power BI数据分析,掌握Power BI在多个业务领域的实际应用。全书共8章:商业智能与数据分析概述;Power BI简介;数据分析与可视化制作全过程;Power BI数据预处理;Power BI数据建模;Power BI数据可视化;Power BI在线服务;Power BI数据分析实战案例。 本书通俗易懂、循序渐进、内容全面、讲解详细,配备全套数据集、教学课件和学习视频,既适合读者自学Power BI数据分析与可视化,也适合大专院校作为教材,更适合从事销售、产品、电商运营、仓储物流、财务管理、人力资源等岗位的职场人士提升技能。
SQL是使用最广泛的数据库语言,绝大多数重要的DBMS支持SQL。本书由浅入深地讲解了SQL的基本概念和语法,涉及数据的排序、过滤和分组,以及表、视图、联结、子查询、游标、存储过程和触发器等内容,实例丰富,便于查阅。新版对书中的案例进行了全面的更新,并增加了章后挑战题,便于读者巩固所学知识。
教材系统地介绍文本数据挖掘的相关概念,利用Python作为工具进行相关试验,其内容主要包括:文本挖掘产生的背景及发展;文本挖掘的概念、文本模型表示、文本内容的预处理,包括分词、去停用词以及特征抽取;文本相似度的概念等。介绍文本分类的概念及常用方法,如KNN算法、SVM算法等,并对分类结果进行评价;在介绍文本聚类聚类的概念时是,同样介绍聚类常用算法,如K均值算法、层次聚类法、密度聚类法等,作为有文本分类、文本聚类的应用,*后给出了信息抽取、社会网络中的实体关系抽取和事件抽取。
本书与以往统计学中的概率论略有不同,添加了一些复杂数据类型的概率基础知识和模拟计算中的相关概率知识。具体安排如下所述。本书共分6章。第1章为概率与计数,基本内容是随机事件、概率空间、计数方法、概率的确定方法。第2章为条件概率,基本内容是条件概率与乘法公式、事件的独立性、全概率公式与贝叶斯公式。第3章为随机变量,基本内容是随机变量及其分布函数、随机变量的分类、二维随机向量、随机变量的独立性、随机变量函数的分布。第4章为常用的概率分布,基本内容是常用的离散型随机变量、常用的连续型随机变量、随机数的产生。第5章为随机变量的数字特征,基本内容是数学期望、方差和协方差、矩和矩母函数、条件期望。第6章为不等式和极限定理,基本内容是概率不等式、大数定律及其应用、中心极限定理。
本书是一本系统介绍Clickhouse的指导型工具书,全书总共分为11章: 第1章 介绍ClickHouse的由来、发展历程、核心特点与核心特点。第2~6章 介绍了ClickHouse基础使用部分,包括整体架构、如何安装、数据定义、数据引擎、数据查询和函数的特性和使用方法。第7~9章介绍了ClickHouse高级特性部分,包括数据库管理操作,数据分片、数据副本和高可用的特性和使用方法。第10~11章介绍了如果自己手动实现ClickHouse中间件的思路和示例,同时也介绍了几款可视化工具与ClickHouse集成的方法。
数据是数字经济的关键生产要素与核心资源。数据要素市场的培育是一个动态演化和持续迭代的过程,而信任的建立是市场建设的关键一步。本书通过“信任”这一视角,对数据流通进行全方位的解读,对中国数据要素市场的建设实践进行回顾与展望。基于“TIME”分析框架,对数据可信流通技术、数据流通机构、可信的数据流通模式以及促进数据可信流通的治理方案进行全面系统的介绍。本书旨在为数据要素市场参与者、数字经济从业者、数据治理人员以及关注数据流通交易的读者提供实用的参考,帮助他们理解数据流通的可行模式,破解数据要素市场发展难题,充分释放数据要素流通潜力,赋能实体经济高质量发展。
在云计算和互联网快速发展的驱动下,分布式技术领域产生了很多新的热点,分布式数据库就是其中之一。但是,目前对分布式数据库的理解和研究多停留在理论层面,本书以Greenplum分布式数据库为例,深入剖析分布式技术在工业级产品里的实现细节,为读者呈现从理论到实践的 全景图 。 本书共3篇:第1篇主要介绍分布式数据库基础理论,包括经典的CAP理论、一致性算法相关的理论、并发控制相关的理论等;第2篇具体介绍Greenplum数据库,从分布式事务、分布式计算和分布式存储3个方面,深入代码层级,讲述分布式理论在工业上的实现;第3篇是总结和展望,介绍云原生数据库和新技术带给Greenplum和数据库管理系统的机遇和挑战。 本书打破以理论介绍和架构介绍为主的思路,深入分析工业化的实现,实践性强。本书主要面向数据库领域的科研工作者
内容简介 这是一部全面讲解数据产品经理核心知识体系的著作。12位作者大多来自国内的知名企业,涉及不同的行业,让本书拥有了更广泛的视角,能帮助读者从不同的角度去了解数据产品经理如何在数据、产品、运营、市场等多个方面产生价值。本书的*终目的是让读者全面了解数据产品经理的工作内容、系统掌握数据产品的核心知识体系,快速实现从入门到进阶的突破。 全书一共11章,重点讲解了数据产品经理应该掌握的11个核心知识点,可以概括为四个部分。 第壹部分 基础知识(第1章) 首先介绍了数据产品的定义、组成、分类,其次介绍了数据产品经理的分类和能力模型,*后介绍了数据产品经理的招聘、应聘和面试。 第二部分 通用能力(第2~3章) 讲解了数据产品经理应该具备的数据分析能力和项目运作能力(产品路线图)。 第三部分 数据管理(第4~9章
Power BI是微软推出的商业智能分析工具,它融合了数据准备、数据分析、数据可视化到报告协作分享的整个数据处理流程,帮助用户上手数据分析。 本书从实用的角度出发,结合作者本人的学习经验,从*基础的Power BI架构和操作界面开始,先通过一个小示例体验Power BI的强大和便捷,然后按照数据处理的流程和难易程度,分别介绍数据准备模块Power Query、数据建模以及Power BI数据分析语言DAX、可视化图表制作、丰富的交互方式和报表设计,*后用一个完整的分析示例带读者全面认识Power BI数据处理流程。 不论读者是学生、职场人士还是自由职业者,不论从事的领域是运营、财务、人力、管理还是电商,只要在平时的学习和工作中需要处理大量信息,分析各种数据,你就适合阅读本书学习Power BI,即使之前没有任何基础,它也可以帮你快速上手,提升自身竞争力。
内容介绍 本书从业务、数据、运营3个维度为电商的经营和决策提供了科学的方法论,是一部电商运营真经,真正做到了“业务中有数据,数据中有运营”。作者是资深的电商行业专家,从事电商数据分析与数据化运营10余年,本书是他在多个知名电商品牌操盘多个千万级项目的经验总结。 为了增强本书的趣味性和读者的角色代入感,本书采用了纪实和叙事的写作手法,书中虚拟了3个核心人物: ?Alex:临危受命、勇挑重担、运筹帷幄的BI部门经理(资深数据分析师)。 ?叶子:有电商行业从业经验但是不懂数据分析的业务员。 ?大白:从其他行业转型到电商行业的数据分析师。 全书有两条主线: ?暗线:叶子和大白在Alex的指导和帮助下成长为“精业务、精数据、精运营”的“三精”数据分析师的经历,这对数据分析师的职业规划和成长有重要借鉴意义。 ?明线:Alex将
Elasticsearch是一款高性能的文档数据库,广泛应用于分布式搜索和分析引擎等相关领域,本书首先介绍了数据建模的通用设计原理,然后针对Elasticsearch 介绍了文档数据库建模的特点和要求,例如和设计模式有关的实现、注意事项,以及实践过程中的注意点等。 本书的两位作者,一位是资深的Elasticsearch 专家,一位是建模领域的大师,联合为读者呈现了这本著作。如果你是一名希望扩展Elasticsearch 建模技能的读者,或者是一名了解Elasticsearch 但需要提高模式设计技能的从业人员,推荐阅读本书。
算力、数据、AI已经成为驱动当今社会技术发展的三架马车,而算力也从传统的超级计算向云超算的方向发展。本书旨在探讨当前超级计算与云计算的融合而给算力带来的新的发展,介绍当前在算力领域的一些实践和探索,从理论到工程,帮助读者了解超级计算的关键技术与未来发展,从而更好地应用和发展高性能技术。