本书是为广大数据分析师量身定制的入门读物,它旨在帮助读者站在大数据时代的制高点。数据分析处于统计学、计算机信息科学、运筹学、数据库等多个领域的交叉地带,大数据时代的到来大大丰富了数据分析的内涵,数据分析师的职责与以往相比发生了巨大的改变。本书全面介绍了经典数据分析、模式识别、机器学习、深度学习、数据挖掘、商务智能等多个领域的数据分析算法,将大数据时代的数据分析热点技术一网打尽。本书为每个数据分析算法都搭配了一个经典案例,并按照由易到难的原则构建知识框架,充分照顾了不同水平读者的阅读习惯。通过阅读本书,读者将对大数据时代下的数据分析有一个全面的认识。无论是入门级的数据分析员还是有一定基础的数据分析师,都能通过本书完善、加深对数据分析的认识。
本书是中山大学重点学科建设成果,获中国矿物岩石地球化学协会大数据与数学地球科学专业委员会推荐,是我国*部地质科学大数据与机器学习教材。本书是中山大学研究生试用研究型教材,对运用大数据挖掘与机器学习算法解决地球科学问题大有裨益。适合地质科学领域研究生和高年级本科生做教材,也可供科研人员研究时参考。它系统地介绍了地球科学大数据挖掘与机器学习的基本框架与原理,重点分析高维数据的降维、分类与预测、大图形社区结构识别、无限流数据处理、机器学习及人工智能地质学的建模过程,对必要的应用场景,使用Python语言给出案例。
本书通过选购笔记本电脑的案例引入数据包络分析(dataenvelopmentanalysis,DEA)的基本概念和模型,并运用简单的EXCEL模型让读者更易理解和运用DEA。本书着重阐述如何将DEA作为一种运营分析工具,进行绩效评估,找出基准标杆。探讨的主题包括:平衡的基准,昀佳实践,相对效率的概念及绩效提升。特别地,本书探讨的数据分析方法能够帮助一个组织重新审视它对生产效率高低的已有观点是否合理,并为组织不断改进提供指导。本书是市面上唯一本不要求读者具备线性规划和线性代数知识,就可以熟练应用DEA方法的DEA方法指导用书。
在新媒体时代,如果对新闻报道、网上搜索的结果或者所谓的 专家告知 不加思考地完全相信,那你就等着上当受骗吧! 本书围绕当今*受瞩目的大数据科学理论,通过日本政府公布的公开数据,集中针对访日游客的增加、舆论调查的可靠性、 安倍经济学 的成果、东日本大地震后的状况、相对贫困、失业率的下降、年轻人远离ХХ、全球变暖问题、减肥、恩格尔系数的上升等10个主题进行数据解读,帮助读者模拟体验数据读取方法,提高理解和分析数据的能力,挖掘出数据背后隐藏的真相。 作为 大数据分析 的超级入门书,即使不擅长数学、不了解统计学的人,读完本书也可以彻底掌握数据解读方法!
本书基于作者近几年来的研究开发成果及应用实践,对物联网大数据技术体系进行了系统归纳,阐述了物联网环境下感知数据的特性、数据模型、事务模型以及调度处理方法等核心概念及关键技术,并对物联网大数据存储、管理、计算与分析的基本概念和关键技术进行了剖析。本书还介绍了自行研发的面向物联网的ChinDB实时感知数据库系统以及针对云计算环境下物联网大数据管理与应用的DeCloud云平台,介绍了它们在智能交通、智能电厂、教育、安全监控等多个行业的应用。书中所有实例,均来自作者所在团队的实际应用,大部分在物联网项目中得到了实践应用。本书对物联网应用的开发以及两化融合、工业4.0环境下的大数据处理分析具有重要参考价值。
基于国家973和863相关项目成果,采用汤森路透德温特世界专利创新索引数据库作为统计数据来源,对信息存储领域的专利文献进行检索分析,从存储器件、设备、系统等层面,选取了目前信息存储领域中的多项重要技术,利用专利统计分析的方法对其发展态势进行了研究,特别是对信息存储领域相关专利进行宏观统计分析以及核心专利的具体分析,可以全方位了解信息存储技术的发展历程、专利的国家或地区分布、重要专利权人的竞争态势,为制定相关战略提供决策参考。同时结合华为、中兴、联想、浪潮、IBM、EMC、三星、美光等国内外知名企业的实际案例,从中国本土和全球的布局两个角度分别分析了专利产出、主要竞争者、热点技术和研发重点以及竞争态势,力求找到信息存储技术专利申请对技术产业化与企业发展的作用,供信息存储研发人员、专利工作者和
本书按照数据库应用(VFP)课程标准组织编写内容,每一个模块包含教学目标、目标双向细目表、典型题解及每一个任务的相应练习。题型有填空、选择、判断、连线、填表、填图和简答。附有5套综合练习,部分题目选自近年来的高职高考题,有较强的代表性。既可作为《数据库基础及应用》教材的同步练习,也可以作为强化数据库学习的好帮手。
本书共分为八章,分别为数据分析概述、外部数据的获取、数据处理、函数的应用、数据透视表与数据透视图、数据分析与可视化、Excel数据分析实例、撰写数据分析报告。本书注重平衡理论知识和实践应用,每章都包含
数据湖仓是一个现代化的开放式架构,拥有当今热门的开源数据技术的广度和灵活性。本书从初学者的角度出发,通过对数据湖仓重要概念的剖析,对数据湖仓的相关知识进行深入浅出的讲解。全书共18章,对数据湖仓的基础知识、数据工程、业务价值、数据集成等方面进行深入探讨,同时展望数据架构的演化趋势,使读者能够领会数据湖仓的精髓,*终轻松、*地管理数据湖仓项目。 本书适合数据架构师、业务人员和系统开发人员,以及对数据管理、数据分析感兴趣的读者阅读。
本书依据商业大数据的特点,对不同类型的商业大数据进行分析和讲解。全书共5 章, 章和第2 章分别对商业大数据分析和商业数据可视化进行了概述,第3~5 章详细阐述了非结构化数据与文本挖掘、社会网络分析与可视化、多维异构数据的分析与可视化。在梳理基本专业理论知识的同时,本书注重与知识点相对应的实际应用案例展示,以便辅助读者更直观地理解理论知识。 本书着重培养学生综合运用专业知识解决理论和实际问题的能力,可以作为高等院校电子商务、管理科学与工程、计算机科学与技术等专业的,也可以作为相关工作人员的参考用书。