本书系统地介绍过程挖掘的原理、方法、技术及其在教育领域的应用,重点介绍基于Petri net 的形式化挖掘技术和基于语义的挖掘技术,并举一个完整的挖掘大学校园学生行为特征的 案例。本书既有完整的理论框架又有专门的教育领域实践应用,可供计算机、大数据、人工智 能等相关专业领域的学生和研究人员参考。
数据是数字经济的关键生产要素与核心资源。数据要素市场的培育是一个动态演化和持续迭代的过程,而信任的建立是市场建设的关键一步。本书通过“信任”这一视角,对数据流通进行全方位的解读,对中国数据要素市场的建设实践进行回顾与展望。基于“TIME”分析框架,对数据可信流通技术、数据流通机构、可信的数据流通模式以及促进数据可信流通的治理方案进行全面系统的介绍。本书旨在为数据要素市场参与者、数字经济从业者、数据治理人员以及关注数据流通交易的读者提供实用的参考,帮助他们理解数据流通的可行模式,破解数据要素市场发展难题,充分释放数据要素流通潜力,赋能实体经济高质量发展。
数据湖仓是一个现代化的开放式架构,拥有当今热门的开源数据技术的广度和灵活性。本书从初学者的角度出发,通过对数据湖仓重要概念的剖析,对数据湖仓的相关知识进行深入浅出的讲解。全书共18章,对数据湖仓的基础知识、数据工程、业务价值、数据集成等方面进行深入探讨,同时展望数据架构的演化趋势,使读者能够领会数据湖仓的精髓,最终轻松、全面地管理数据湖仓项目。 本书适合数据架构师、业务人员和系统开发人员,以及对数据管理、数据分析感兴趣的读者阅读。
技术是把双刃剑,当我们在积极拥抱新技术的同时,也不能忽视其所带来的风险,比如当今大数据时代个人隐私和安全问题。本书是两位作者结合各自出色的专业知识和丰富的从业经验为大众倾力奉献的一本大数据时代隐私问题的普及读物。书中展示了我们在家庭和工作中的日常活动是如何成为大数据收集的一部分的。同时,列举大量的大数据应用以及安全和隐私相关案例,包括企业如何利用大数据进行营销、执法机构如何利用大数据执法等,也包括不法分子如何利用非法或合法的手段获取数据,如何利用社交网络进行犯罪。针对上述问题,本书也列出了一些工具、技巧用来检查和防范,这在当前很有现实意义。
随着互联网 下半场 的到来,企业经营思路发生了重大转变,由野蛮式增长逐步向精细化运营过渡,数据成为了各大企业制胜的法宝。与之对应的是,传统的以用户体验、产品功能为主要工作内容的产品经理市场饱和度越来越高,求职竞争越来越激烈,而壁垒却越来越弱,用数据赋能业务的产品经理则在招聘市场上供不应求,策略产品经理就是其中之一。本书主要从职业发展、技能体系、工作过程以及方法论沉淀等角度来生成策略产品经理的画像,旨在帮助有志成为一名策略产品经理的人士了解策略产品经理需要具备的基本素质与能力、他们是如何工作的,以及成为一名策略产品经理的学习路径。本书适合计划成为一名策略产品经理的在校生学习,也可以为想转型为策略产品经理的职场人士提供参考。另外,也很欢迎现阶段正在从事策略产品经理工作的同行阅读本
本书的主要内容是作者及其合作者在复杂数据模型这一领域近些年的研究成果, 以及相关的最新进展. 全书共 6 章. 第 1 章简要介绍几类复杂数据模型和 bootstrap 等预备知识和相关研究问题. 第 2~6 章, 系统讨论各种复杂数据统计推断中的 bootstrap 基本理论、方法及其应用, 包括 Behrens-Fisher问题、异方差回归模型、异方差 ANOVA 和 MANOVA 模型、混合效应模型及高维数据分析中的 bootstrap 统计推断.
本书是一本深入研究数据挖掘领域中关联规则挖掘和可变精度模糊粗糙集理论的著作,其中关联规则挖掘以频繁集挖掘为主要内容,研究包括如何充分利用模糊约束进行频繁集的挖掘,高效的**频繁集挖掘算法,以及可变精度模糊粗糙集的性质和算法。本书强调理论性和技术性的统一,在理论研究的同时提供了技术的实现。
本书采用案例和理论相结合的形式,以Anaconda和PyCharm为开发工具,系统地重点阐述了利用Python进行数据预处理、分析与可视化等相关知识,讲解了Python各种数据处理展示的函数方法的使用方法。全书共有6章,分别是数据分析概述、Python基础、利用Pandas进行数据预处理、利用Pandas进行数据分析、利用Matplotlib进行数据可视化、Python数据分析与综合应用。在教学设计中安排了知识图谱、学习目标、知识指南、任务实训、结果分析、巩固训练、每章测试等模块。本书既可以作为本科和高职院校各专业数据分析相关课程的教材,也可以作为企业电子商务、市场营销、数据分析人员的参考资料。
本书系统讲授数据挖掘的原理、主要方法及其Python实现,共分三部分:第一部分包含第1~2章,介绍数据挖掘的基本概念、流程和数据预处理;第二部分包含第3~11章,介绍经典的分类算法(包括朴素贝叶斯分类器、决策树、k-近邻、支持向量机等)、经典的聚类分析、关联分析、人工神经网络和Web挖掘等方法;第三部包含第12~14章,共有3个综合案例,包括泰坦尼克号生存数据分析、心脏病预测分析和旅游评论倾向性分析。
数据挖掘算法为大数据与人工智能的核心,掌握数据挖掘各算法的编程实现,有助于提升大数据的实践运用能力。本书详细阐述了数据挖掘常用算法与编程实现,同时,本书以多个经典的数据挖掘赛题为案例,详细论述了数据预处理、特征选择、可视化、算法选择等全流程数据挖掘过程的编程实现,有助于提升读者面对实际数据问题时灵活运用各类算法能力。
SQL是使用最广泛的数据库语言,绝大多数重要的 DBMS 支持 SQL。本书由浅入深地讲解了SQL的基本概念和语法,涉及数据的排序、过滤和分组,以及表、视图、联结、子查询、游标、存储过程和触发器等内容,实例丰富,便于查阅。新版对书中的案例进行了全面的更新,并增加了章后挑战题,便于读者巩固所学知识。