作为浙江省委、省zheng府深入实施创新驱动发展战略、探索xin型举国体制浙江路径的重大科技创新平台,之江实验室勇闯科研“无人区”,基于智能计算与材料、天文、制药、育种等前沿学科交叉融合的研究成果,组织编写 “之江实验室智能计算丛书” ,以期在更大范围内凝聚共识,利用智能计算技术,服务我国社会经济高质量发展。 丛书由朱世强教授担任丛书主编,对之江实验室关于智能计算的理解和行动进行全面介绍。《智能计算》为总论,各分册分别论述了重大科学装置“智能计算数字反应堆”与材料、天文、制药、育种等学科深度耦合的应用成果。丛书系统梳理了智能计算的理论体系、技术体系和标准体系,将智能计算与国家重大战略需求和新兴学科交叉融合,促进多学科对综合性问题的协同攻关,成为智能计算“之江定义”的
软体机器人技术是一个新兴的领域,使机器人能够在非结构化或不稳定的环境中工作,并执行需要精细度和延展性的任务。这一切都是关于软材料——硅树脂、布、气球、软塑料的工程,并以不同的方式将它们结合起来,为有
如何应对以人工智能为代表的新一轮科技革命带来的伦理和治理上的挑战?这是一个未被以往任何单个学科的研究所涵盖的问题。相比以往的技术,人工智能的独特之处就在于它的“自主性”。换言之,或由于技术本身的特性、或由于其应用过程中社会赋予了它特定角色,当代人工智能技术已经在深度“参与”人的决策。在这个意义上,人工智能技术与传统的工具意义上的技术有质的区别。正是由于这种对人的决策的深度“参与”,人工智能技术导致了短期和长期的伦理问题。本书系统地讨论了这些问题,在社会如何应对新一轮科技革命和产业变革的问题上有思想资源和分析框架上的性贡献。
从零基础开始,系统阐述卷积神经网络理论基础及其实践应用,可以帮助初学者快速学习和构建深度学习。第1章简要介绍了图像表示和一些计算机视觉模型;第2章介绍了回归、机器学习和优化的概念;第3章介绍了Rosenblatt感知器和感知器学习算法、logistic神经元及其激活函数,以及两类和多类问题的单神经元模型等;第4章介绍了卷积池化层和CNN;第5章通过介绍CNN的一些当前新颖实用的用法,进一步拓展和丰富了深度神经网络的结构。
本书分为两大部分:部分主要基于Scikit-Learn,介绍机器学习的基础算法;第二部分则使用TensorFlow和Keras,介绍神经网络与深度学习。从外,附录部分的内容也丰富,包括课后练习题解答、机器学习项目清单、SVM对偶问题、自动微分和特殊数据结构等。书中内容广博,覆盖了机器学习的各个领域,不仅介绍了传统的机器学习模型,包括支持向量机、决策树、随机森林和集成方法,还提供了使用Scikit-Learn进行机器学习的端到端训练示例。作者尤其对深度神经网络进行了深入的探讨,包括各种神经网络架构、强化学习,以及如何使用TensorFlow/Keras库来构建和训练神经网络。本书兼顾理论与实战,既适合在校学生,又适合有经验的工程师。
如何应对以人工智能为代表的新一轮科技革命带来的伦理和治理上的挑战?这是一个未被以往任何单个学科的研究所涵盖的问题。相比以往的技术,人工智能的独特之处就在于它的“自主性”。换言之,或由于技术本身的特性、或由于其应用过程中社会赋予了它特定角色,当代人工智能技术已经在深度“参与”人的决策。在这个意义上,人工智能技术与传统的工具意义上的技术有质的区别。正是由于这种对人的决策的深度“参与”,人工智能技术导致了短期和长期的伦理问题。本书系统地讨论了这些问题,在社会如何应对新一轮科技革命和产业变革的问题上有思想资源和分析框架上的性贡献。
本书力求具有理论性、实用性、系统性和导向性,内容密切结合数据中心现状,从理论上提出并论证了面向未来云计算数据中心的架构模型,梳理云计算数据中心项目建设流程和相关环节的注意事项。书中针对云计算数据中心重要组成子系统基础设施、电源系统、制冷系统、网络及综合布线系统、云计算系统、信息安全等方面提出了建设方案,并紧密结合工程实际,结合具体项目案例详细介绍了云计算数据中心的规划,为云计算数据中心的建设人员和管理人员提供了清晰的思路和可操作的方法。本书内容丰富,实用性强,涉及云计算数据中心规划方法、案例等内容,可作为云计算数据中心项目建设工程技术人员、管理人员的参考书或培训教材。
从零基础开始,系统阐述卷积神经网络理论基础及其实践应用,可以帮助初学者快速学习和构建深度学习。第1章简要介绍了图像表示和一些计算机视觉模型;第2章介绍了回归、机器学习和优化的概念;第3章介绍了Rosenblatt感知器和感知器学习算法、logistic神经元及其激活函数,以及两类和多类问题的单神经元模型等;第4章介绍了卷积池化层和CNN;第5章通过介绍CNN的一些当前新颖实用的用法,进一步拓展和丰富了深度神经网络的结构。
这本机器学习畅销书基于TensorFlow 2和Scikit-Learn的新版本进行了全面更新,通过具体的示例、非常少的理论和可用于生产环境的Python框架,从零帮助你直观地理解并掌握构建智能系统所需要的概念和工具。 全书分为两部分。首先介绍机器学习基础,涵盖以下主题:什么是机器学习,它试图解决什么问题,以及系统的主要类别和基本概念;第二部分介绍神经网络和深度学习,涵盖以下主题:什么是神经网络以及它们有什么用,使用TensorFlow和Keras构建和训练神经网络的技术,以及如何使用强化学习构建可以通过反复试错,学习好的策略的代理程序。*部分主要基于Scikit-Learn,而第二部分则使用TensorFlow和Keras。 通过本书,你会学到一系列可以快速使用的技术。每章的练习可以帮助你应用所学的知识,你只需要有一些编程经验。所有代码都可以在GitHu
2023年度国家科学技术学术著作出版基金资助著作 由“中国人工智能 2.0 发展战略研究”重大咨询研究项目成果形成 覆盖无人机、无人船、空间机器人、智能工厂等11类前沿研究热点 多位院士组成编委顾问 本书由“中国人工智能 2.0 发展战略研究”重大咨询研究项目的成果形成。项目由清华大学的吴澄院士担任组长,浙江大学的孙优贤院士和中国科学院沈阳自动化研究所的王天然院士担任副组长。课题组还包括封锡盛、杨学军、钟志华、金东寒、陈杰、戴琼海、王耀南等院士以及其他 20 余位专家。本书全面阐述了智能无人系统的基础理论、关键应用、示范应用等内容,以期帮助读者对智能无人系统的现状和未来发展趋势有较为全面的了解。