本元素周期表以彩色图片的形式展示,A面为元素性质表格,主要是原子量、电子构型、摩尔体积、原子半径、电离能、晶体结构、电负性、电子亲合能等数据。B面以彩色插图形式表示本元素代表性的应用或性质,并配以文字简单介绍。另附一小册子介绍各元素的性质和代表性反应等,以满足读者在不同环境中的需求。
本书从科技这一独特视角,勾勒出了中华民族五千年来历史文化发展的轨迹,反映了中国科技历史文化的基本面貌和中华民族精神。本书文理兼备,是中国传统文化知识的百科丛书中的一本。同时也是一本增长知识、陶冶情趣,进行爱国主义教育的好书。
本书是一本简单的书也是一本复杂的书,是一本遥远的书也是一本亲近的书。在书中,作者为大家介绍了10位来自不同地区的数学先驱的生平事迹与他们的伟大成就。也许其中介绍的一些数学问题你并不了解,也许里面的一些专业术语你并不熟悉,但是这并不会妨碍你对他们伟大人格的理解,也不妨碍你从他们身上了解到一些投身科学的精神。希望每个人都能从这本书中得到一定的启发,也相信通过作者的生动描述会让大家对看似枯燥的数学有一个崭新的认识。
本书是在《物理学简明教程学习辅导》的基础上修订而成的。 本书与马文蔚等编写的《物理学简明教程》(第二版)配套。本书各章节顺序与主教材一致,每章分基本要求、学习指导、问题分析与讨论和习题分析与解答四个部分。每章均提出教学要求;归纳和总结知识要点,并补充典型例题,进行分析、讨论和解答;分析和讨论主教材中每章的问题;对主教材中每章的习题给出简明分析和解答。全书紧扣主教材,从教学实际出发,注重实用性。 本书适合以《物理学简明教程》(第二版)为教材的师生作为教学和学习的辅助用书,也可供其他读者自学时使用。
本书主要涉及初等数论的相关知识,共选编了62道较经典的初等数论题目和它们的解答,并在后面列出了所需要的定义和定理。通过这些题目和解答,能增强读者解决数学问题的能力。 本书可供从事这一数学分支或相关学科的数学工作者、大学生以及数学爱好者研读。
本书是学习黎曼-芬斯勒几何(简称芬斯勒几何)的入门教材。全书共十章,作者以较大的篇幅,即前五章介绍了芬斯勒流形、闵可夫斯基空间(即芬斯勒流形的切空间)上的几何量、陈联络,以及共变微分和第二类几何量、黎曼几何不变量和弧长的变分等基本知识和工具。在有了上述宽广而坚实的基础以后,论述芬斯勒几何的核心问题,即射影球丛的几何、三类几何不变量的关系、具有标量曲率的芬斯勒流形、从芬斯勒流形出发的调和映射、局部射影平坦和非局部射影平坦的芬斯勒度量等。它们既是当前十分活跃的研究领域,也是作者研究成果的领域之一,含有作者独到的见解。本书每章内都附有一定数量的习题,书末附有习题解答和提示,便于读者深入学习或自学。 本书可作为综合性大学、师范院校数学系与物理系高年级本科生和研究生的教材或教学参考书,也可
本书共分六章。章介绍了*事件的概念与运算、概率的定义、古典概型、条件概率、全概率公式与贝叶斯公式、事件的独立性与伯努利概型等内容;第二章介绍了*变量及其分布的概念、*变量的数字特征以及常见的离散型和连续型分布;第三章将*变量的概念扩展到二维*变量,介绍了二维*变量的分布、独立性及其数字特征;第四章简要介绍了切比雪夫不等式、大数定律和中心极限定理;第五章介绍了总体、样本和统计量等统计学的基本概念以及X’分布、t分布和F分布等内容;第六章介绍了参数的点估计和区间估计以及正态总体参数的假设检验的方法与步骤。
本书系统地介绍了置换多项式的产生、发展和理论,并且着重介绍了它在现代科学中的广泛应用.论述深入浅出,简明生动,读后有益于提高数学修养,开阔知识视野。 本书可供从事这一数学分支相关学科的数学工作者、大学生以及数学爱好者研读。
本书是作者在复旦大学数学系主讲 空间解析几何 课程20多年的结晶,全书共3章,*章,直线与平面;第二章,曲线与二次曲面;第三章,非欧几何,包括球面三角形、射影平面几何与双曲平面几何等内容. 书中许多定理和事实是重新证明过的,有些章节完全是作者自己编写的. 每章附有一定数量的习题,其中不少习题是复旦大学数学系 空间解析几何 课程的考题. 本书可作为综合大学数学和应用数学专业 空间解析几何 课程的教材,也可作为教师教学参考用书.
本书专门编配《现代光学基础》一书,对其中各章的习题一一作了解答。特点是寓指导于题解之中,不仅对问题作一个明晰的解答,还贯穿以剖析以及随时的引申,注意阐明问题的实质,给读者以启发,巩固学到的知识,并能真正有益于解决各种实际问题。本书简洁、明晰、流畅, 可供学习光学的理工科学生、教师及其他研究人员使用。
本书是按照实验教学的要求,专为有机化学实验教学编写的教材。本书内容主要包括有机化学实验的基础知识、天然有机化合物提取分离技术、有机化合物的合成、物理常数的测定、色谱分析及有机化合物性质实验等。本书将有机化学反应原理、有机化合物合成分离、天然有机化合物的提取、有机化合物物理常数测定以及相关实验方案设计等内容融为一体,具有简明生动、应用性强等特点。
本书选编上海交通大学近年的10份本科非数学专业数学物理方法(含原复变函数、积分变换和工程数学)课程考试试卷,对每一道试题均做详解,部分题目有题前分析和题后点评,指明解题思路和方法以及学生在解题过程中常犯的错误,有的题还给出多种解法。本书还编有3份模拟试卷并附答案,供学生复习自测使用。 本书可作为高等院校《数学物理方法》课程师生的教学辅导用书,也可供考研者参考。
《初等数论100例》由柯召、孙琦编著,选编了100个初等数论题目和它们的解答,并在后面列出了所需要的定义和定理,通过这些题目和解答,能增强解决数学问题的能力。 本书除了可以作为中学教师、中学生的读物外,也可供广大数学爱好者阅读。
本书是高等农林院校 十三五核心课程 规划教材,是在中国农业大学非化学专业本科生的有机化学实验教学多年经验积累的基础上,以及参考国内外相关教材及部分研究论文的基础上编写而成。全书共分成5章,主要介绍了有机化学实验基本知识、有机化学实验基本操作、有机化合物的合成、天然产物的提取及分离以及微波有机合成等内容。内容详实,贴近实际。本书可作为高等农林院校农业生产、生命科学、食品科学、环境科学等专业本科生的有机化学实验教材使用,也可供相关院校和农林专业的技术人员参考。
本书共分4个章节,具体内容包括函数、极限与连续、一元函数微分学、一元函数积分学。另外,书后还附加了数学实验(MATLAB在微积分中的简单应用)、微积分简史、微积分学常用公式和习题参考答案以供读者作为参考。该书可供各大专院校作为教材使用,也可供从事相关工作的人员作为参考用书使用。
本书介绍了线性代数的基本理论,主要包括用消元法解高阶方程组(包括适定、超定和欠定),用向量空间理解线性代数,以及线性变换的实际应用三个方面。通过近50个应用实例,介绍了它们的建模方法和解题程序。 本书的特色:(1) 实用化:本书以工科的后续课程及实际工程问题的解题需要选择内容,包含十几个应用例题;(2) 大众化:简化理论,使具有高中毕业程度的读者用较少的学习时间(约30学时)就能基本掌握;(3) 现代化:用计算机软件(MATLAB)来解决问题,不依靠笔算。 本书的读者对象为在职工程师(继续教育读物)、应用型技能型专业的学生(以本书为线性代数教材)以及普通高校本科学生(以本书为参考书)。
用常规和母函数方法解决排列、组合、分配问题的技巧;用递推关系、容斥原理、棋盘多项式等求解计数问题的方法与技巧;图形可变换情况下染色方案的统计方法;存在性问题的证明方法与技巧。其中含实用例题300多个。