本书根据作者多年的教学改革实践修订而成,内容包括*事件与概率、离散型*变量及其分布、连续型*变量及其分布、*变量的数学特征、*变量序列的极限、现代概率论基础简介、数理统计的基本概念、参数估计、假设检验、回归分析与方差分析。书中各章附有相当数量的习题,书末附有习题的参考答案,供读者查阅。本书在*制定的教学大纲的基础上,紧扣硕士研究生入学考试大纲,并以此规范概率统计中的术语与记号。
本书一方面,以《教师教育课程标准》、《教师资格标准》和《数学学科知识与教学能力》(初级中学)考试大纲为依据,以指导和辅助学生有效整合教师教育相关大学学科知识学习为指向,密切结合学习与应试需求,使学习者通过阅读和学习本教材,具有适应初中教学和和国家教师资格考试相关科目的数学学科知识与教学能力;另一方面,以初中数学教师应具有的数学学科知识与教学能力为核心内容,以已有考试真题和命题趋势为导向解读数学学科知识与教学能力中各类知识的学习要点和应试策略。
介绍抽象代数学的基础知识,内容有:群论、环论、域论以及域上的伽罗华理论,本书特点:内容丰富、处理简洁。
内容简介 近世代数是代数学的一个基础学科,讲述代数基本结构的特性.本书除系统介绍群、环和域的基础知识(包括域的有限伽罗瓦扩张理论)之外,还力图强调近世代数中的思想和方法.书中有大量习题.除主线内容之外,还增加一些附录用来开拓和深化所学内容.本书在中国科学技术大学讲授多年的讲义基础上修改写成,可作为高等学校数学系基础课教材,也可供数学工作者和通信、计算机科学等领域的工程技术人员参考.
本书是数理统计入门级的教材,作为基础课的教材,本次修订我们修改了版中的不当之处,删去了U统计量、线性估计、构造置信限等内容,选择点估计、区间估计、参数检验和分布检验4个基本的统计问题作为本书主要内容,中间插入贝叶斯统计的一些观念和方法。全书5章内容,把统计量和抽样分布等基本概念归入第1章,为年轻读者进入统计学的研究和应用打下扎实的基础
《现代数学基础·伽罗瓦理论:天才的激情》是一本专门讲述伽罗瓦理论的教材。内容包括伽罗瓦理论基本定理和多项式方程的根式可解性、伽罗瓦群的计算及其反问题,《现代数学基础·伽罗瓦理论:天才的激情》强调通过伽罗瓦对应,可将代数数域中的问题转化成群论的问题加以解决。作为这种思想的应用,证明了代数基本定理,解决了e和π的超越性及尺规作图的四大古代难题。为方便读者查阅,附录中详细梳理了所要用到的群、环、域方面的结论。每节配有充足的习题并包含提示。《现代数学基础·伽罗瓦理论:天才的激情》可作为高等学校数学类各专业的教材,也可供其他相关专业参考。
张恭庆、郭懋正编著的《泛函分析讲义(下)》是一部泛函分析教材,它系统地介绍线性算子理论的基础知识,算子半群以及连续函数空间上的Wiener测度和Hilbert空间上的Gauss测度。全书共分四章: Banach代数;无界算子;算子半群以及无穷维空间上的测度论。本书注意介绍泛函分析理论与数学其他分支的密切联系,给出丰富的例子和应用,以培养读者运用泛函分析方法解决问题的能力。 本书适用于理工科大学数学系、应用数学系高年级本科生、研究生阅读,并且可供一般的数学工作者、物理工作者和科学技术人员参考。
本书首次出版于1884年,一百多年来一直吸引着各个年龄层次的读者,已成为科幻小说的经典之作。 本书的主角是生活在二维的平面国里的一个正方形,它向读者介绍了二维世界中的各种奇异现象,并带领读者游历了一维的直线国和三维的空间国,还提出了它对更高维的思考。作者的奇妙构思提供了对维度概念的直观、生动的刻画,并能引发读者更深入的思考。不仅如此,作者还借此讽刺了英国维多利亚时代的性别歧视和阶级制度。 这是一本集数学、科幻、讽刺于一体的奇书。在作者的精心阐述下,本书不仅有趣,而且有益,曾被翻译成多国文字,并以电影、动画片等形式出现。相信任何对科幻、科学、数学、写作或社会建制感兴趣的人都会喜欢这本书。
《法兰西数学精品译丛:谱理论讲义(第2版)》是由J.迪斯米埃在20世纪70年代开设线性算子谱理论课程时手写油印的讲义翻译而来的在相当长的一段时期里,该讲义在法国被这一领域的所有学生认真反复阅读,也被教授这一课程的教师大量使用、在本书中,迪斯米埃以完整地陈述谱定理为核心目的,通过基本也是常用的一些例子让读者明白所引进的每一个概念、每一条定理,都是在后续内容中必不可少的,并娴熟地应用各种技巧对定理给出精确、简短而优雅的证明——这就是布尔巴基成员的作品。而本书中体系的严谨与清晰明了则是作者一贯的写作风格 《法兰西数学精品译丛:谱理论讲义(第2版)》可以作为研究生泛函分析基础课的教材,也可以作为大学本科高年级选修课教材,、对于非泛函方向的学生来说,《法兰西数学精品译丛:谱理论讲义(第2
《数学与人文》丛书第三十四辑将继续着力贯彻 让数学成为国人文化的一部分 的宗旨,展示数学丰富多彩的方面。 本辑共分4个栏目,包含了11篇文章。 专稿 栏目收录了丘成桐先生的 几何三讲:从古代到黎曼 。 中外数学大师的经历 栏目刊载了王作跃和郭金海的文章 陈省身、华罗庚和普林斯顿高等研究院 以及另一篇纪念、回忆文章 纪念John Tate 。 国际数学家的友好交往 栏目收录了丘成桐先生纪念John Coates教授的文章以及Coates教授的生平介绍、其儿子写的悼念文章和梁志斌博士对他的采访;栏目还登载了丘成桐先生的 祝贺Karen Uhlenbeck八十华诞 , 同时收录了Uhlenbeck教授的小传;栏目的最后一篇是悼念挪威数学家Selberg的文章。 数学家趣味 栏目收录了澳门大学数学系金小庆教授的文章 书法记 。 我们期望本丛书能受到广大学生、教师和学者的关注和欢迎,期待读者对
集合论的主要概念(基数、序数、超限归纳)对于所有数学家都是*基础的,并非仅限于研究数理逻辑或集合论拓扑的专家。通常分析、代数或拓扑学的课程只会给出基础集合论的一个概貌,然而事实上它足够重要、有趣和简单,值得慢慢地学习品味。 《集合论基础》使得读者能够以悠闲品味的方式学习集合论的内容,它适用于广大范围的各类读者,从本科生直至那些想要*终掌握超限归纳并且理解它为何总被Zorn引理替代的专业数学家。 《集合论基础》介绍了 朴素 (非公理化)集合论的所有主要内容:函数、基数、有序集和良序集、超限归纳及其应用、序数、序数上的运算。《集合论基础》还包括对Cantor-Bernstein定理、Cantor的对角构造、Zorn引理、Zermelo定理和Hamel基的讨论和证明。此外,书中还给出了150多道问题,循序渐进地揭示了集合论基本思想和方
本书是为高等理工科院校各专业本科生、研究生开设的 数值计算方法 课程而编写的教材. 全书系统地介绍了现代科学与工程计算中常用的数值分析理论、方法及有关应用,内容包括: 数值计算方法引论、线性方程组的数值解法、非线性方程的数值解法、矩阵的特征值与特征向量的计算、插值法、小二乘法与曲线拟合、数值微积分、常微分方程的数值解法等. 本书取材新颖、阐述严谨、内容丰富、重点突出、推导详尽、思路清晰、深入浅出、富有启发性,便于教学与自学. 为了加强对学生基本知识的训练与综合能力的培养,每章末都配备了小结并精选了相当数量的算法与C语言程序设计上机实例、复习思考题及综合练习题,以便读者巩固、复习、应用所学知识. 书末附有习题答案与提示,可供教师与学生参考.本书可作为高等理工科院校各专业本科生、研究生 数值计算
《复变函数专题选讲》是复变函数专业基础内容的进一步发展,共分为9章,包含cauchy定理的推广、*模原理、整函数与亚纯函数、共形映射、解析开拓及riemann曲面初步、调和函数与dirichlet问题、 函数和b函数、椭圆函数、cauchy型积分。上列*后三项与复变函数的应用有密切联系,其他各项都是专业基础内容的进一步发展。它们在复变函数论的理论研究和应用中都有重要意义。 《复变函数专题选讲》可作为数学类高年级大学选修课及研究生必修课的参考书,也可供广大数学工作者和有关科研人员参考。
本书是作者在多年教学经验的基础上撰写的一部实变函数教材,第二版在第一版使用9年的基础上作了修订,第三版特别增加了部分习题参考答案与提示。本书内容包括:集合与实数集、Lebesgue测度、可测函数、Lebesgue积分、微分和积分、Lp空间。每章后均附习题与例题,以便于读者学习和掌握实变函数论的基础知识。
胡里克编著的《初等代数几何(第2版)》是代数几何的一个导引,其目的是给出代数几何的基本概念和方法,并用大量例题对它们进行解释,这可以让读者在一些补充资料的帮助下独立进行工作。《初等代数几何(第2版)》特意保持使用初等语言。书中一方面展开一般理论,另一方面则处理具体的例题和应用,并着重于这两者之间的相互作用和联系。 《初等代数几何(第2版)》适合大学数学系的本科生阅读参考,他们已经学过了代数和函数论的基础课程。《初等代数几何(第2版)》的新版做了重大修改,增添了许多新图和习题,所有习题都有解题提示。
本书是《数学与人文》丛书为纪念陈省身先生诞辰100 周年而出版的专辑。 书中*部分选登了历史上伟大的几何学家欧几里得、高斯、黎曼和陈省身的代表作,以显示几何学两千多年来基本思想的发展; 并介绍了索菲斯 李、嘉当、布拉施克等的生平和工作, 陈省身在继承了这些前辈们的成就基础上, 开创了整体微分几何的新时代。第二部分主要介绍陈省身的合作者, 以及他们的合作成果在如何影响现代几何学乃至代数学等领域的发展。第三和第四部分主要由陈省身的朋友、同事和学生们所写: 第三部分中的纪念文章, 反映了陈先生扎在中国传统文化中深深的根, 以及他致力于推进中国数学事业的发展, 关心、帮助年轻人的伟大人格; 该部分还介绍了国际数学联盟首次颁发陈省身奖章。第四部分适合数学家阅读, 包括陈省身数学工作的介绍, 纪念陈省身的自述文章和数学研究;*
本书是作者多年来在南开大学数学系讲授泛函分析课程的基础上写成的。全书共分6章:第一章,距离空间与拓扑空间;第二章,赋范线性空间;第三章,有界线性算子;第四章,Hilbert空间;第五章,拓扑线性空间;第六章,Banach代数。本书可作为泛函分析的一本入门教材。每章末附有一定量的习题。
本书是《数学建模算法与应用(第3版)》的配套书籍。本书给出了《数学建模算法与应用(第3版)》中全部习题的解答及程序设计,另外针对选修课的教学内容,又给出一些补充习题及解答。本书的程序来自于教学实践,有许多经验心得体现在编程的技巧中。这些技巧不仅实用,也很有特色。书中提供了全部习题的程序,读者可以将这些程序直接作为工具箱来使用。
20世纪以来,概率论逐渐渗入到自然科学、社会科学以及人们的日常生活中。无论是在研究领域,还是在教育领域,它愈来愈成为重要的学科之一。在概率论发展历史上,18、19世纪之交法国科学家拉普拉斯具有特殊的地位。 拉普拉斯在他的纯粹与应用数学的众多严格的学术著作之外,还出版了为普通读者写的两篇通俗文章,《关于概率的哲学随笔(双语版)》就是其中的一篇,它构成了《拉普拉斯全集》第7卷中的巨著《概率的分析理论》的引言。 《关于概率的哲学随笔(双语版)》的意图就是让读者不借助较深的数学知识就能了解概率的原理,作者本质上将数学对象以非数学的面貌呈现,用大众化的语言详细论述当时概率论的原理和一般结论。 拉普拉斯概率理论在19世纪的概率论发展史上占据了中心和统治地位,对19世纪的概率论的发展产生了
Б.П.吉米多维奇是前苏联有影响的教育家和数学家。他主编的《吉米多维奇数学分析习题集》(含4462道习题),内容丰富,覆盖面广泛,针对性强,在我国有较大的影响,书中的许多习题,都广泛地被我国多所高等院校《微积分》教材所采用,有些题目甚至出现在全国考研等试题中。《吉米多维奇 高等数学习题精选精解》。对该书进行了精选,共分八章,每章又分若干节。在章节设置上与财经院校《微积分》教材基本一致,涉及的内容涵盖了《微积分》的全部主题,涵盖了硕士研究生入学考试数学三大纲的全部内容。