本书对高等数学的大部分内容作了简明的、介绍性的论述,全书共分十二章,其中八章分别讨论数论、代数、几何及线性代数、极限、连续性及拓扑学、微分、积分、级数和概率、每章都从基本概念、基本定理开始,一直论述到当前的进展,并附有该学科的历史概况及有关的著名数学家的生平简介,重要参考书。另外还有三章分别讨论数学模型与现实,数学的应用及17世纪的数学史,最后一章讨论数学的社会学、数学的心理学及数学教学。《BR》 本书内容丰富,论述严谨,可使读者了解数学的全貌、现代数学的特点及数学的应用并可提高读者对数学的兴趣。《BR》 本书由胡作玄同志翻译,张燮同志初校,沈永欢同志复校。
本书按照《高等数学》 (同济七版)章节顺序,并 参照 制订的 考研数 学考试大纲 和中国数学会 制定的 中国大学生数学竞 赛大纲 编写,包括十二个 章节的同步检测以及上册( 前七章)与下册(后五章) 的综合检测,共计十四套试 卷,每套试卷又含ABC三份 检测试卷,其中,A卷是基 本内容难度,夯实基础;B 卷是学校考试难度,强化训 练;C卷是考研竞赛难度, 拓展提升,对于试卷中的每 一道题目,均有配有详细的 解答过程。 本书内容丰富、题型多 样、解析专业,可作为理工 科大学一年级学生学习高等 数学的配套资料,同时还可 以作为准备复习考研和参加 大学数学竞赛的参考书及其 相关教师的参考资料。
本书共分十二章,每章又分若干节,在章节设置上和同济大学六版高等数学教材基本一致,涉及的内容涵盖了高等数学的全部主题。在本书中每章除最后一节外每节包括两大部分内容:知识要点:简要对每节涉及的基本概念
随着社会主义市场经济体制的建立,经济的发展对应用型人材的需求越来越多。大力发展职业技术教育是实施科教兴国战略,提高劳动者素质,促进经济发展、社会进步以及劳动就业的重要途径。而选拔高职高专毕业生进入本科高等学校继续学习是高等职业技术教育发展的重要标志。近年来参加高职高专毕业生。进入本科高等学校继续学习入学考试的学生越来越多,但目前省内缺乏《高等数学》考试教材(用书)。由省教育厅指导和组织,在厦门大学出版社支持下,福建省高等数学研究会组织了福州大学、福建农林大学、集美大学、福建工程学院、闽江学院、福建交通职业技术学院、福建水利电力职业技术学院等七所高等学校的《高等数学》任课教师编写了《高等数学》专升本考试教材(用书),以满足广大考生的需要。本教材兼具教学与考试指导用书的性质,即既可以
本书主要论述了线性规划、整数规划、非线性规划、多目标规划和动态规划等内容,并介绍了一些成功的实用实例和计算机应用过程,为便于自学,各章后面都附有习题。 本书可作为高等学校工科专业本科及研究生的教学用书,也可供从事化研究与应用、现代技术和管理的科技人员参考。
《青少年信息学奥林匹克竞赛实战辅导丛书:信息学奥赛之数学一本通》的适用对象包括:中学信息学奥林匹克竞赛选手及辅导老师、大学ACM程序设计比赛选手及教练、高等院校计算机相关专业的师生、程序设计爱好者等。数学是计算机程序设计的灵魂。利用数学方面的知识、数学分析的方法以及数学题解的技巧,可以使得程序设计变得轻松、美观、高效,而且往往能反映出问题的本质。在外各项程序设计比赛(比如,ACM、NOI)活动中,越来越多地用到各种复杂的数学知识,对选手的数学修养要求越来越高。编写《青少年信息学奥林匹克竞赛实战辅导丛书:信息学奥赛之数学一本通》的目的就在于给广大ACM队员、NOI选手以及编程爱好者,系统分析一些程序设计中常用的数学知识和数学方法。
本书是作者多年来在大学生数学竞赛辅导和考研辅导经验的基础上编写而成的.全书共分为13 章,每章包括4 个模块,即知识要点、典型例题分析、深化训练以及深化训练详解.本书编写的目的主要有两个:一是帮助工科类、经管类本科生备考全国大学生数学竞赛,使学生能够在短时间内迅速掌握各种解题方法和技巧,提升学生综合分析问题、解决问题的能力;二是为了满足工科类、经管类本科生考研的需要. 在例题和习题选编方面,精选了部分有代表性的数学竞赛真题和考研真题,同时注重例题、习题的创新,按题型分类进行合理编排,使学生能够尽快地适应考研题型,从容应对考试.本书既可以作为普通高等院校工科类、经管类本科生参加全国大学生数学竞赛的辅导用书,也可以作为工科类、经管类本科生考研深化训练用书.
本书根据近期新普通高等教育专科升本科招生考试高等数学I的考试要求,并在总结多年专升本高等数学教学辅导经验的基础上编写而成。本书主要内容包括函数、极限与连续,导数与微分,微分中值定理与导数的应用,不定积分,定积分,微分方程,向量代数与空间解析几何,多元函数微分学,二重积分,无穷级数。 本书对高等数学I考试要求的数学知识进行科学梳理并归纳成相应考点,每个考点均采取“知识点例题练习题”的模式组织内容,以期使考生能够进行系统化的学习、巩固和提高,高效地掌握考试内容。 本书可以作为专升本教学和培训的教材,亦可作为专升本考生的备考用书。
本书根据近期新普通高等教育专科升本科招生考试高等数学I的考试要求,并在总结多年专升本高等数学教学辅导经验的基础上编写而成。本书主要内容包括函数、极限与连续,导数与微分,微分中值定理与导数的应用,不定积分,定积分,微分方程,向量代数与空间解析几何,多元函数微分学,二重积分,无穷级数。 本书对高等数学I考试要求的数学知识进行科学梳理并归纳成相应考点,每个考点均采取“知识点例题练习题”的模式组织内容,以期使考生能够进行系统化的学习、巩固和提高,高效地掌握考试内容。 本书可以作为专升本教学和培训的教材,亦可作为专升本考生的备考用书。
本书主要是根据“数学建模”课程的教学和数学建模竞赛培训活动的实际需要,以及作者多年从事相关工作的实践经验和体会编写而成的,从内容上突出体现了“广、浅、新、用”的现代应用特点。 主要内容包括量纲分析,集合分析、微分方程、差分方程、插值与拟合、层次分析、概率分布、数理统计、回归分析、线性规划、整数规划、非线性规划、动态规划、排队论、对策论、性决策分析、多目标决策分析、图论、模糊数学和灰色系统分析等20大类数学建模方法,每一种方法都有相应的应用案例分析及参考案例。最后附有历年中国大学生数学建模竞赛和美国大学生数学建模竞赛的问题,以及MATLAB的使用简介。 本书可作为专科生、本科生、研究生的“数学建模”课程教材外,还特别适用于数学建模竞赛的培训教材,以及供从事应用研究的工程技术人员参考