本书对高等数学的大部分内容作了简明的、介绍性的论述,全书共分十二章,其中八章分别讨论数论、代数、几何及线性代数、极限、连续性及拓扑学、微分、积分、级数和概率、每章都从基本概念、基本定理开始,一直论述到当前的进展,并附有该学科的历史概况及有关的著名数学家的生平简介,重要参考书。另外还有三章分别讨论数学模型与现实,数学的应用及17世纪的数学史,最后一章讨论数学的社会学、数学的心理学及数学教学。《BR》 本书内容丰富,论述严谨,可使读者了解数学的全貌、现代数学的特点及数学的应用并可提高读者对数学的兴趣。《BR》 本书由胡作玄同志翻译,张燮同志初校,沈永欢同志复校。
《高等数学典型例题分析》是以同济版《高等数学》(第七版)为蓝本编写的学习辅导书,全书共分11章,内容包括:一元函数与极限、导数与微分、微分中值定理与导数的应用、不定积分、定积分及其应用、常微分方程及其应用、向量代数空间解析几何、多元函数微分学及其应用、重积分、曲线积分与曲面积分、无穷级数,每章内容包括内容提要、例题、思考题三部分,内容提要给出相关的概念、定理和公式。例题注重对解题思想、解题方法的分析和总结,培养学生的数学思维,思考题帮助读者巩固、拓展所学数学知识。 《高等数学典型例题分析》例题典型,覆盖面广,解题方法清晰完整,解题思路分析透彻,归纳总结全面,《高等数学典型例题分析》可作为高等学校大学数学课程的教学参考书、习题课教材,以及考研复习用书,
朱开永、王升瑞主编的《高等数学(下)》是根据高等工程教育的办学定位和工程技术型人才培养的目标,参考“高等院校高等数学教学大纲与基本要求”,结合笔者多年教学实践经验编写而成。 本书分为上、下两册,此为下册,内容包含了常微分方程、无穷级数、向量代数与空间解析几何、多元函数微分学、重积分、曲线积分与曲面积分。每一节和每一章后的习题和自测题书中配有答案。本书附有多媒体课件。本书在编写过程中着重把握“以应用为主,够用为度”,注意强调学生基本分析问题和运算能力的培养,取材少而精,文字叙述通俗易懂,论述确切;条理清晰,循序渐进;重点突出、难点分散;例题较多,典型性强;深广度合适,非常便于教与学。 本书可作为高等院校(独立学院、民办高校、网络学院)理工科专业应用型人才培养的教材,也可以
本书是为配合清华大学电子学教研组编,童诗白、华成英原著,华成英主编的《模拟电子技术基础(第六版)》的使用而编写的,对教材中的每一章均按“内容概要”“难点释疑”“例题精解”“习题解答”四个部分编写,提炼重点,解决难点,示范性地分析和解决问题。本书既可作为教师手册,又可作为学生的辅导教材,还可作为自学者的参考书。
本书依据 大学生数学竞赛大纲与江苏省普通高等学校高等数学竞赛大纲,并参照 制订的考研数学考试大纲编写而成,内容分为 限与连续、一元函数微分学、一元函数积分学、多元函数微分学、多元函数积分学、空间解析几何、级数、微分方程等八个专题,每个专题含“基本概念与内容提要”“竞赛题与精选题解析”与“练习题”三个部分。其中,竞赛题选自 大学生数学竞赛试题(非数学专业组), 硕士研究生入学考试试题,江苏省、北京市、浙江省、广东省等省市大学生数学竞赛试题,南京大学、东南大学、清华大学等高校高等数学竞赛试题,莫斯科大学等国外高校大学生数学竞赛试题.;另外,从近几年 硕士研究生入学考试试题中也挑选了一些“好题”,作为本书的有力补充。这些题目中既含基本题,又含很多构思巧妙、解题技巧性强,具有较高水平和较大难
本书为《高等数学(同济 七版)》(上册)的配套辅导书,本书共分为7章,每章包含知识结构图、考研大纲要求、考研试卷分值统计、本章内容概述、题型与方法、考研真题解析、教材课后习题详解、目标自测题与答案共七个部分。本书主要特点:例题种类详细,知识点的结构层次清楚,内容充实,方法性强以及与考研联系紧密。本书是针对使用该教材的教师与学生的同步辅导书,也适合作为考研数学复习的参考书。
本书是与同济大学数学科学学院编《高等数学下册》第八版配套的新形态学习辅导书,全书与教材一致分为五章,每章内容包括:知识点思维导图、知识要点与考点分析、定理公式助记表、考研大纲要求、常考题型解题思路点窍、进阶提高题、本章习题全解,以及附录:考研数学公式——高等数学(下)。 本书有四大特色:(1)知识全面、题型多样。(2)条理清晰、学习高效。(3)资源丰富、信息融合,书中含71个高等数学知识点视频、25个习题解答视频及5个进阶提高题解题笔记,视频总时长约25小时。书中衬页还给出了各章知识点思维导图,扫描下方的二维码可获取相关知识点视频。(4)联系考研、实用性强。 本书适用于使用同济大学数学科学学院编《高等数学下册》第八版的读者,也可作为高等数学课程的学习辅导书及考研参考书。
《高等数学习题精选精解》由山东大学张天德教授、蒋晓芸教授主编。山东大学刘建亚教授、吴螓教授对全书作了仔细的校审,并对部分习题提出了更为精炒的解题思路。该书可以作为在读大学生同步学习的优秀辅导书,也可以作为广大教师的教学参考书,还可以为毕业生考研复习和众多成人学员自学提供富有成效的帮助。读者使用本书时,宜先独立求解,然后再与本书作比较,这样一定会获益匪浅,掌握较多的有用知识。
本书是与同济大学数学科学学院编写的《高等数学》(第八版)相配套的学习辅导书,由同济大学数学科学学院的教师编写。本书内容由三部分组成,第一部分是按《高等数学》(第八版)下册的章节顺序编排,给出习题全解,部分题目在解答之后对该类题的解法作了小结、归纳,有的提供了多种解法;第二部分是全国硕士研究生入学统一考试数学试题选解,所选择的试题以工学类为主,少量涉及经济学类试题;第三部分是同济大学高等数学试卷选编以及考题的参考解答。本书对教材具有相对的独立性,可为学习高等数学的工科和其他非数学类专业学生以及复习高等数学准备报考硕士研究生的人员提供解题指导,也可供讲授高等数学的教师在备课和批改作业时参考。
本教材主要面向职业院校的教学,有效结合课程思政,充分体现高等数学为专业课服务的性质,突出了数学的实用性和易学性,能够适应国家对职业教育的新要求,能满足线上、线下教学的需求。本教材的编写宗旨为:让人人都能学会高等数学。重新设计思路,在定义定理的表述上使用朴素的语言描述,让学生易于与实践相联系、案例更贴近专业实际问题,从而使学生更容易理解、更能感受数学的真实价值所在。
本书共包括19章,内容包括:从一道USAMO试题的解法谈起、一道1940年的匈牙利数学竞赛试题、费马其人、迪克森论费马数、费马数是复合数的一个充要条件、费马数和梅森数的方幂性、费马数为质数的一个充要条件、关于居加猜测与费马数为素数的充要条件、几个有关费马数的结论、费马数取模的一个结论、关于费马数的优选素因数、费马数的Smarandache函数值的下界、费马数和一类极大周期序列的2一adic复杂度、搜寻广义费马素数、b≤2000,m≤10的广义费马素数、广义费马素数性判定问题的几个结论、广义费马数中的孤立数、关于广义费马数F(6。1,m的一个结论、广义费马数与伪素数。本书适合高等学校数学专业学生、教师及相关领域研究人员和数学爱好者参考阅读。
本书涵盖了线性代数的知识要点、典型习题、考研真题以及难度稍大的综合习题,汇集了线性代数的基本解题思路、方法和技巧,融入了编者多年讲授线性代数的经验和体会。相信本书会成为读者学习线性代数的良师益友。本书共分六章,每章分若干节,在章节划分和内容设置上与近期新版硕士研究生入学考试大纲完全一致。每章除最后一节外每节包括两大部分内容:知识要点:简要对每节涉及的基本概念、定理和公式进行了系统梳理; 基本题型:对每节常见的基本题型进行了归纳总结,便于学生理解、掌握,可作为学生学习线性代数课的同步练习或习题使用,有利于提高学生的解题能力和数学思维水平。每章最后一节是综合提高题型。这一节的题目综合性较强、有一定难度,特别是有相当一部分是考研真题。通过本节的学习可以提高读者的思维能力和分析问题
《离散数学》由石茂编著
牛映武主编的《运筹学(第3版)》系统地介绍了运筹学的主要内容,包括线性规划、目标规划、整数规划、动态规划、图与网络分析(含网络计划技术)、存贮论、排队论、决策论(含多目标决策、层次分析法和数据包络分析法)、对策论(含冲突分析)和非线性规划。附录介绍了Win QSB软件的使用方法。本书重点介绍了运筹学各分支的基本原理、基本方法及其应用。注重实用性,注重理论联系实际,具有一定的深广度。每章末有小结,展示了各分支的发展趋势。 《运筹学(第3版)》可作为高等学校经济管理类各专业和其它专业本科生和研究生的教材或参考书,亦可供广大工程技术人员、管理人员自学参考。
《线性代数附册学习辅导与习题全解 同济·第七版》 《线性代数附册 学习辅导与习题全解 同济·第七版》是与同济大学数学科学学院编《工程数学线性代数》第七版教材配套的学习辅导书,由同济大学作者团队根据教材内容和教学要求编写而成。该书在《工程数学线性代数》第六版附册(即辅导书)的基础上修改而成。全书与教材一致分为六章,每章内容包括基本要求、内容提要、学习要点、释疑解难、例题剖析与增补、习题解答、补充习题(附答案和提示)、自测资源等多个栏目。其中“释疑解难”根据编者对课程内容的深刻理解和长期积累的丰富经验进行编写;“例题剖析与增补”充分挖掘例题的内涵,有助于读者举一反三,掌握学习方法;“习题解答”注重阐明解题的思想和方法,对全书习题给出规范解答。 《线性代数附册 学习辅导与习题全解 同济·第七
《高等数学习题集》自2000年出版 版以来,受到读者的一致好评,现出版第五版,在保持原有特色和风格的基础上,增减和修改了部分习题,加强了相关内容的基本概念、基本理论和基本技能的训练,每个章节的习题搭配上 注意“坡度”,且题型及内容 趋于合理。
本书是在普通高等教育“十一五”国家规划教材《大学数学应用教程(本科第二版·上册)》基础上,深入总结多年来教学改革和实践的经验,迎合教育.部应用型本科转型改革和试点的需要并充分利用多媒体等现代教学技术编