偏微分方程是数学学科的一个分支,它和其他数学分支均有深刻的联系,而且在自然科学和工程技术中有广泛的应用。本书主要讲述广义函数与Sobolev空间、偏微分方程的一般理论、椭圆型方程的边值问题、双曲型方程或抛物型方程的初值问题与初边值问题、能量方法、半群方法等内容。以此为提高读者的整体数学素质提供合适的材料,也为部分读者进一步学习与研究偏微分方程理论做准备。
《高等数学引论》是我国著名数学家华罗庚在上世纪60年代编写的教材,曾在中国科学技术大学讲授,全书共分四册,包含了微积分、高等代数、常微分方程、复变函数论等内容,全书反映了作者的“数学是一门有紧密内在联系的学问,应将大学数学系的基础课放在一起来讲”的教学思想,还包括了作者的“要埋有伏笔”、“生书熟讲,熟书生温”等教学技巧,书中还介绍了数学理论的不少应用。这使得本套书不同于许多现行的教科书,是一套有特色、高水平的高等数学教材。 册包括实数极限理论、微分和积分及其应用、级数理论、方程的近似解等内容:第二册包括多元函数的微积分、多重级数理论、曲线及曲面、场论、Fourier级数、常微分方程组等内容;第三册主要介绍复变函数论的一般理论;第四册主要介绍代数矩阵论的基本理论及其应用。 本书再版时得
南开大学数学专业的高等代数与解析几何课是国家精品课程,其教材《高等代数与解析几何(第二版)》是普通高等教育“十一五”国家级规划教材,也是2007年度普通高等教育精品教材。本书给出了该教材除第10章仿射几何与射影几何外的习题的全部解答,也给出了在教学中积累的许多重要、有趣的题目及其解答,有的题目给了多种解答,有的题目给了一些注解,希望本书不仅对使用该教材的读者有些助益,对未使用该教材的读者也有所帮助。
本书主要介绍高等数学中300道经典习题的一题多解,这是作者在30多年教学过程中的积累和总结。书中的习题及其解法部分选自高等数学及数学分析类参考文献、国内外大学数学竞赛试题和研究生入学考试试题及其解答,部分源于作者多年的教学研究成果,其中有不少是作者编制的新题和给出的新颖解法,解法丰富多彩。每道习题均包括典型例题、特别提示及类题训练三个环节,供读者拓展解题思路、思考和练习之用,以加深对相关解题方法的理解和运用。全书例题与同类训练题总和达1500多道。习题的典型性与广泛性、解法的多样性与新颖性、解法的普适性与拓展性、类题的针对性及习题的海量性是本书的主要特色。
本书是普通高等教育“十三五”规划教材、全国高等医药院校规划教材《医药高等数学》(第5版)的配套教材,也是本书的第4版。全书分10章,包括一元函数微积分、空间解析几何、多元函数微积分、微分方程与无穷级数等。《医药高等数学》侧重于理论,本书侧重于理论知识的归纳总结、各类各层次习题的分析与解法,它有利于学生对高等数学的概念与理论的理解,有利于培养学生归纳总结、分析解决问题的能力,有利于学生对运算和方法的掌握,也有利于沟通教与学两个教学环节。
本书作为国家精品教材同济大学数学系《高等数学》的配套用书,书中精选了大量源自各高校的各种考试试题,具有集中要点,与教学同步;多级筛选,突出重点等特点。本书可作为本科院校学生学习高等数学课程的参考用书。
《普通高等教育“十二五”规划教材:大学文科数学(第3版)》根据当前普通高等院校文科数学课程教学指导意见和教材改革精神,在第2版的基础上,由从事文科数学教学的一线教师执笔编写,深入浅出地讲解了大学文科数学的基本知识,包括:函数、极限与连续,一元函数微分学,一元函数积分学,二元函数微积分学,常微分方程简介,线性代数初步及初等概率论基础,共七章内容.每章还配备适量的例题和习题。 《普通高等教育“十二五”规划教材:大学文科数学(第3版)》注重数学思想的介绍和基本的逻辑思维训练,从不同的侧面比较自然地引人数学的基本概念,适量给出一些相关的证明过程及求解过程,由于大学文科数学的学时限制,在教材内容的选取与组织上对高等数学、线性代数及概率论课程的知识进行了必要的精简。本书结构严谨、逻辑
本书是大学数学学习指导系列之一,包含了线性代数与空间解析几何中的主要内容。全书共分十一章,它们是行列式、矩阵、n维向量空间、线性方程组、空间解析几何、矩阵的特征值与特征向量、二次型、一元多项式、线性空间、线性变换和欧几里得空间等。本书精选了将近400道例题和400道练习题,选材注重突出课程的基本要求,力求做到解题简明,思路清晰,由易到难,从基本到综合,循序渐进。本书编写体例有内容精讲、典型例题、练习和提示与答案四部分。概述了每一章节的基本概念、基本定理和基本方法。在某些难以理解或容易出错的地方特别作出解释,指出各概念之间的联系。在大部分例题中,都有思路分析、解题过程、小结以及注解等,有的题还提供了每一节后面都安排了适量的习题,读者可以通过练习进一步巩固所学到的知识,掌握各种题型的解
本书为《高等数学(同济 七版)》(上册)的配套辅导书,本书共分为7章,每章包含知识结构图、考研大纲要求、考研试卷分值统计、本章内容概述、题型与方法、考研真题解析、教材课后习题详解、目标自测题与答案共七个部分。本书主要特点:例题种类详细,知识点的结构层次清楚,内容充实,方法性强以及与考研联系紧密。本书是针对使用该教材的教师与学生的同步辅导书,也适合作为考研数学复习的参考书。
《广义微分几何讲义》是已出版的《广义微分几何》(广义微分几何领域第一本教材)的配套教学笔记,一半源自作者在汕头大学的授课经历,一半则是作者在同各方学者多年研究探讨后的研究成果、思考、练习等作者希望与读者分享的笔记。全书以时间线为轴,讲述广义微分几何领域的起源和发展,编排合理,每章篇头都有总述、定义、理论等讲解,辅以推论过程,由简到难,自然过渡到结论,很符合授课讲义的风格,其后还有习题、问题、思考探讨等用以巩固讲义知识,并启发思考,对研究微分几何或数学物理的学生与研究人员极为有用。
本书是根据《高职高专教育高等数学课程教学基本要求》的精神,本着“必需、够用”的原则而编写的。本书注重基本概念和基本方法,适当增加了解决实际问题的例子,以培养学生用数学原理和方法解决问题的能力。此外,本书还淡化了理论上的严密性,强化了几何说明,这样更显直观,降低了学生学习高等数学的难度。 全书内容包括函数与极限、导数与微分、导数的应用、不定积分、定积分、定积分的应用、常微分方程、多元函数微分学、二重积分、级数、拉普拉斯变换、矩阵及其应用和概率论初步。书后附有初等数学常用公式、常用平面曲线及其方程、习题参考答案。 本书可作为高职高专高等数学课程的通用教材。
本书是高职高专院校工科类与经济类数学教学辅导用书,适应于我国高等职业教育。为了适应高等职业教育的教学改革和发展,满足高等教育高等数学课堂上“教、学、做”一体化的
《高等数学典型例题分析》是以同济版《高等数学》(第七版)为蓝本编写的学习辅导书,全书共分11章,内容包括:一元函数与极限、导数与微分、微分中值定理与导数的应用、不定积分、定积分及其应用、常微分方程及其应用、向量代数空间解析几何、多元函数微分学及其应用、重积分、曲线积分与曲面积分、无穷级数,每章内容包括内容提要、例题、思考题三部分,内容提要给出相关的概念、定理和公式。例题注重对解题思想、解题方法的分析和总结,培养学生的数学思维,思考题帮助读者巩固、拓展所学数学知识。 《高等数学典型例题分析》例题典型,覆盖面广,解题方法清晰完整,解题思路分析透彻,归纳总结全面,《高等数学典型例题分析》可作为高等学校大学数学课程的教学参考书、习题课教材,以及考研复习用书,
本书内容包括:线性代数的学习与考试;章至第五章依次为:矩阵和行列式,向量空间,矩阵的秩与线性方程组,特征值与特征向量,实二次型;模拟试题与参考答案;书末附有2000年-2003年共4年高等教育自学考试全国统一命题考试《线性代数》试题。其中,章至第五章每章都包括以下六部分:学习目的和基本要求,考核知识点,重点内容分析,典型例题解析,同步综合练习,同步综合练习参考答案。 本收有以下主要特点:1.注重根本,针对性强。2.注重方法,实用性强。3.重点突出,详略得当。4.指导学习方法,注意培养读者能力。 本书适用于自学读者,也可作为电大、职大、函大、各类成人教育以及理工科院校的大学生作为学习线性代数的学习辅导书和教学参考书,还可供有关教师和科技工作者参考之用。
高等数学课程是所有工科学生必修的基础理论课程。上海同济大学应用数学系主编的《高等数学》第五版以体系完整,层次清晰,深入浅出的特点成为高等数学这门课程的经典教材。 为了帮助学生能更好地学好这门课程,本书配合上述教材,对教材的主要内容、基本公式进行了知识点归纳,并对教材课后的习题以及总习题进行了全面解答,在解题过程中提供了相关的解题思路,有助于学生掌握解题技巧。此外,在每章中提供了同步自测题和综合题解析,为学生有针对性地巩固和提高自己的解题能力提供了更多的练习,其中部分题目出自历年考试中出现的全真题,并附有详细解答。 本书可供在各类高等学校中学习高等数学课程的学生以及自学成材的学生参考使用。
本版《高等数学》上、下册系高等院校“新高职”或“一般本科”高等数学课程使用的教材,本教材基本保留了“高等数学”课程内容的传统风格,编写时参照了《高等数学课程教学基本要求》.本书上册包括函数、极限与连续、导数与微分、微分中值定理及导数的应用、不定积分、定积分及向量代数与空间解析几何等7章;下册包括多元函数微分学、重积分、级数、微分方程及附录中的曲线积分与曲面积分等5章。全书基本上覆盖了现行理工科类院校《高等数学》课程(本科生)的全部教学内容. 本书既适用于全日制普通高等理丁科院校及经济、管理类院校的本科生作为高等数学课程的教材,又可以作为网络高等教育、函授、高等职业技术教育或成人继续教育的大专生作高等数学课程的教科书。
《高等数学》按照**制定的“工科类本科数学基础课程教学基本要求”编写。《高等数学》分上、下两册,共12章。此为下册,内容包括向量代数与空间解析几何,多元函数微分法及其应用,重积分,曲线积分与曲面积分,常数项级数与幂级数,傅里叶级数等6章。书中每节后配有适量的习题,每章之末均配有复习题。为方便读者查阅参考,在所附习题或复习题之后,都附有答案或提示。 《高等数学》条理清晰,论述确切;由浅人深,循序渐进;重点突出,难点分散;例题较多,典型性强;深广度恰当,便于教和学,本书可作为普通高等院校(特别是“二本”及“三本”院校)或成人高校工科类本科或专升本专业的“高等数学”课程的教材,也可供工程技术人员或参加国家自学考试及学历文凭考试的读者作为自学用书或参考书。
本书是金秀岩主编的高职高专教材《高等数学》的配套辅导教材,是在参考金秀岩主编的《高等数学学习指导》的基础上编写而成,是理工类高职高专各专业学生学习《高等数学》的辅导教材,也可作为高职高专经济类各专业以及自学考试、专升本学生学习《高等数学》的辅导教材。
本书是为学习高等数学的读者编写的,按国内通常高等数学教材知识点布局,分为十二章,每章设若干节、知识脉络图和按章模拟考题.各节均设诸栏目,对高等数学的主要知识点进行归纳,释疑解惑,剖析典型例题,揭示解题方法与技巧,并配制两级测试题及答案与提示,供学生自测.
本书分上、下两册。上册内容包括函数、极限与连续、导数与微分、导数的应用、不定积分、定积分及其应用和空间解析几何。下册内容包括多元函数及其微分法、重积分、曲线积分与曲面积分、无穷级数、常微分方程及附录“数学史料”。 为适应不同专业的需要。书中适量配置了一些标有*的内容。以供选学。 本书作为大学专科和高等专科学校各专业的教材。也可供工程技术人员参考。
由同济大学数学系编著的《高等数学(下第3版普通高等教育十一五*规划教材)》分上下两册。 下册分4章,内容包括空间解析几何与向量代数、多元函数的微分学及其应用、多元函数的积分学及其应用、无穷级数。本书知识系统、体系结构清晰、讲解透彻、难度适宜、语言通俗、例题丰富,适合作为普通高等院校工科类、理科类(非数学专业)高等数学课程的教材使用。可供成教学院或申请升本的专科院校的学生选用,也可供相关专业人员和广大教师参考。