本书*、二、三、四版分别出版于1987年、1993年、2003年和2011年。基于作者20多年来从事数学建模教学、组织数学建模竞赛、开设数学实验课程以及编写相关图书的经验,参考国内外数学建模教材和教学单元,第五版在保持前四版基本结构和风格的基础上,进行补充与修订:增加了一些实用性较强、生活气息浓烈、数学推导简化的案例,改写、合并、调整了若干案例和章节,删除了个别案例,并对习题作了相应的修订。 本书可作为高等学校各专业学生数学建模课程的教材和参加数学建模竞赛的辅导材料,以及科技工作者的参考书。
《高等数学解题指南》是理工医农各专业的大学生学习 高等数学 课的辅导教材。两位作者在北京大学从事高等数学教学四十年,具有丰富的教学经验,深知学生的疑难与困惑。他们围绕着该课的基本内容与教学要求,根据学生初学时遇到的难点与易犯的错误,通过精心挑选的典型例题进行分析、讲解与评注,给出归纳和总结,以帮助学生更好地理解 高等数学 课的内容,掌握其基本理论和正确的解题方法与技巧。全书共分13章,内容包括:一元微积分,空间解析几何,多元微积分,无穷级数(包含傅里叶级数)与常微分方程等。在每一节中,设有基本理论内容提要,典型例题的讲解与分析,以及供学生自己做的练习题等部分,书末附有练习题的答案。为了适应不同程度学生的要求,本书还较系统地讲解了适量的综合题和一定难度的例题(以*号标出),这些内
苏联著名数学家庞特里亚金院士为中学生专门撰写了一系列数学普及读物,旨在向广大读者介绍高等数学的重要概念和方法。这些书简明扼要, 根据中学生的认知和理解能力用不大的篇幅讲解相应数学领域的基础知识, 注重基本概念的联系和普遍性, 部分书还附有颇具启发性的例题或习题。庞特里亚金在书中展示了他惊人的数学直觉和驾驭公式的技巧, 注重学科发展史,看重理论框架而非繁琐计算。这一系列图书为广大读者提供了探索数学世界并培养数学思维的机会。本书是该系列图书中的一本,介绍坐标法,以平面解析几何为主,还包括一些代数问题,给出复数的几何表述以及多项式的复变函数表述,从而能够证明高等代数基本定理。本书还介绍空间中的笛卡儿坐标和立体解析几何,可供喜欢数学的高中生以及中学和大学的教师参考。
本书从课程评价领域的发展与国际现状,课程评价的方法,我国课程评价模型的建构与实践三个方面进行了系统论述。首先,本书对课程评价的理念与内涵、课程评价的模型及其发展历程进行回顾,对当前世界范围内主要国家的课程测量实践和国际课程评价项目进行比较与总结。其次,从混合方法论的视角出发,对课程评价方法进行梳理与分析。在此基础上,结合我国课程实际,建构起具有中国特色的课程评价模型和适合我国课程实情的课程测量与评价方法体系。*后,以我国小学数学为例,将所构建的课程评价理论模型进行逐层落实,实现对我国小学数学课程从宏观到微观层面的系统测量与评价,以验证所构建的课程评价模型及评价方法体系的合理性与科学性。
本书结合当前江苏省专转本选拔考试高等数学考纲要求,其编写目的是为广大考生提供一本适用、高效的复习资料,内容包括极限和连续、一元函数微分、一元函数积分、多元函数微分、多元函数积分、微分方程、级数、行列式、矩阵及其运算、线性方程组的解等。本书严格按照江苏省专转本选拔考试高等数学考纲中各章的顺序配备练习,这些题目与历年考题仿真度极高,既覆盖了大纲范围内的重点和难点,又十分注重解题技巧和方法,考生通过考前强化训练,有望获取高分甚至满分。
本书是作者运用自己的独到的科学见解为全国普通高等学校本科生编写的 “高等代数”教材,内容包括:线性方程组的解法,行列式,数域K上的n维向量空间,矩阵的运算,一元多项式环和n元多项式环,线性空间,线性映射,双线性函数,二次型,具有度量的线性空间等。本书具以下有鲜明的特色:以研究线性空间及其线性映射为主线,科学地安排内容的讲授体系;用数学的思维方式编写教材,使学生既比较容易地学到“高等代数”的基础知识和基本方法,又受到数学思维方式的熏陶和训练,终身受益;编写体例新颖,每节均有“内容精华”“典型例题”“习题”三个栏目。
本书按照《高等数学》 (同济七版)章节顺序,并 参照 制订的 考研数 学考试大纲 和中国数学会 制定的 中国大学生数学竞 赛大纲 编写,包括十二个 章节的同步检测以及上册( 前七章)与下册(后五章) 的综合检测,共计十四套试 卷,每套试卷又含ABC三份 检测试卷,其中,A卷是基 本内容难度,夯实基础;B 卷是学校考试难度,强化训 练;C卷是考研竞赛难度, 拓展提升,对于试卷中的每 一道题目,均有配有详细的 解答过程。 本书内容丰富、题型多 样、解析专业,可作为理工 科大学一年级学生学习高等 数学的配套资料,同时还可 以作为准备复习考研和参加 大学数学竞赛的参考书及其 相关教师的参考资料。
本书详细地介绍了计算机中常用的数值计算方法,主要内容包括:误差分析、解非线性方程的数值方法、解线性方程组的直接方法、插值法、数值积分。本书每章末均附有丰富、实用的习题。
本书是为配合清华大学电子学教研组编,童诗白、华成英原著,华成英主编的《模拟电子技术基础(第六版)》的使用而编写的,对教材中的每一章均按“内容概要”“难点释疑”“例题精解”“习题解答”四个部分编写,提炼重点,解决难点,示范性地分析和解决问题。本书既可作为教师手册,又可作为学生的辅导教材,还可作为自学者的参考书。
本书是根据编者多年的教学实践经验,参照*制定的“工科类、经济管理类本科数学基础课程教学基本要求”,以及**颁布的“全国硕士研究生入学统一考试数学考试大纲”中有关高等数学部分的内容编写而成,分为上、下两册。 本书为上册,主要内容包括极限与函数的连续性、导数与微分、微分中值定理与导数的应用、不定积分、定积分及其应用和常微分方程。
《高等数学解题全攻略(下卷)》从浩瀚的题海中归纳、总结出的题型解法,对同学们解题具有很大的指导作用。书中的经典问题解析对教材的重点、难点进行了诠释,对同学们掌握这方面知识起到事半功倍的效果。《高等数学解题全攻略(下卷)》是针对考研、参加数学竞赛的同学撰写的,对在读的本科生、专科生及数学教师同仁也具有很高的参考价值。
本书以简短的篇幅叙述了线性泛函分析的基础理论。全书共分5章。按章序分别讲解度量空间和赋范空间的拓扑知识与结构性质、有界线性算子和有界线性泛函的基本定理、共轭空间与共轭算子、Hilbert空间的几何学以及线性算子的谱理论。本书注重阐述空间和算子的基本理论,取材既有简洁的一面又有深入的一面,并适当引入了自反空间、一致凸空间等较新的内容,在突出基本理论系统的同时,有选择地叙述了在其他学科分支的应用。
本书依据全国大学生数学竞赛大纲与江苏省普通高等学校高等数学竞赛大纲,并参照考研数学考试大纲编写而成,内容分为极限与连续、一元函数微分学、一元函数积分学、多元函数微分学、多元函数积分学、空间解析几何、级数、微分方程等八个专题,每个专题含 基本概念与内容提要 竞赛题与精选题解析 与 练习题 三个部分。其中,竞赛题选自全国大学生数学竞赛试题(非数学专业组),全国硕士研究生入学考试试题,江苏省、北京市、浙江省、广东省等省市大学生数学竞赛试题,南京大学、东南大学、清华大学等高校高等数学竞赛试题,莫斯科大学等国外高校大学生数学竞赛试题.;另外,从近几年全国硕士研究生入学考试试题中也挑选了一些 好题 ,作为本书的有力补充。这些题目中既含基本题,又含很多构思巧妙、解题技巧性强,具有较高水平和较大难度的创新
本教材包含一元函数微积分、多元函数微积分、概率论基础、线性代数初步等几个部分。一元函数微积分部分以极限、连续、微分、积分为主线展开讨论。(常)微分方程本质上也是一元函数的积分;多元函数微积分部分在简单介绍空间解析几何知识的基础上,以二元函数为对象,介绍极限与连续、偏导数与全微分、极值、二重积分等知识;概率论部分,在介绍了事件与概率等基本概念之后,以古典概型为基础,讲述概率的加法与乘法公式,进而讨论了常见随机变量的概率分布及其数字特征;线性代数部分,主要讲述行列式的性质与运算、矩阵的初等变换、线性方程组的解等内容。
本书着眼素质教育,注重数学内容、思维之间内在的联系,条理、结构、脉络清晰,能培养学生数学思维能力,便于教学与学习。在教材内容选取和讲述上,本着从简单到复杂、从特殊到一般的原则,力求深入浅出,“预、补结合”,难易结合,易教易学,主要内容包括:函数、极限、连续函数、导数与微分、微分中值定理与导数的应用、不定积分、定积分以及定积分的应用。为了增加可读性与趣味性,同时还增加了一些数学思想方法简介和数学家简介,兼顾各个层次民族预科学生学习状况,还分层次提供多种程度的习题。
本书是在、二版的基础上,根据*高等学校非数学类专业数学基础课程教学指导分委员会修订的“工科类本科数学基础课程教学基本要求”,并结合教学实践的经验修改而成。本书分上、下两册。上册内容是一元函数微积分和微分方程(共7章);下册内容是多元函数微积分和级数(共5章)。书末还附有微积分应用课题、积分表和习题参考答案。《BR》 本书加强对数学概念与理论从实际问题的引入和从几何与数值方面的分析,并增加了应用实例和习题;加强计算机对教学的辅助作用,结合教学内容充分运用教学软件,每章后有“演示与实验”并配有光盘;注意“简易性”,尽量做到通俗易懂、由浅入深、富于启发和便于自学。
本书是配套高等数学教学使用的学生课后练习的自测题,本书对学生掌握《高等数学》提出了较高要求,可作为对高等数学要求较高的专业的学生使用。