本书是作者在多年教学经验的基础上撰写的一部实变函数教材,第二版在第一版使用9年的基础上作了修订,第三版特别增加了部分习题参考答案与提示。本书内容包括:集合与实数集、Lebesgue测度、可测函数、Lebesgue积分、微分和积分、Lp空间。每章后均附习题与例题,以便于读者学习和掌握实变函数论的基础知识。
本书是根据文科学生的需要而编写的比较简明扼要的一本教材。全书分为五个部分:函数极限与微积分 、线性代数、线性规划简介、概率论初步、数理统计及Excel统计应用简介。全书例题丰富,每节后均配有适当数量的习题。
本书是作者根据在北京大学和清华大学多年的教学实践过程中编写的,并增加了部分习题。内容主要内容包括多项式、行列式、线性方程组、矩阵、二次型、线性空间、线性变换和欧几里得空间。本书按教程各章习题顺序编排,使学生提高分析问题和解题的能力,加深对基本内容的理解与掌握,开发学生智能,增强对学好本门课程的信心和兴趣
《高等代数习题解(上)(修订版)》从多项式、行列式、线性议程组、矩阵等方面,精选了618道典型性较强的习题,做了全面详细的解答,并注意了一题多解。每节习题之前都对本节主要定义、定理和理要结论作了简要的概述。内容丰富,重点突出,解答明确,尤其便于自学。可供高等院校师生、中学教师和广大数学爱好者以及有志报考研究生的人员学习参考。
《预科数学基础教程》具备以下特点: (一)汉字认读与数学语言的结合 对于汉语基础较差,至多在中国仅仅接受过一个学期的汉语强化教学(约650学时)的预科生来说,对以汉语表述的数学上的很多专业词汇和常用语往往不知其音;或知其音,不知其意;或一知半解;所以必须让汉字教学和数学知识教学同时进行。在本书的每一节中,我们设计了“认一认”部分,专门用拼音和英文同时标注数学生词,以减少阅读和学习障碍,这是预科数学教学中不可缺少的一个环节。由于汉语数学表达的特殊性,预科生的阅读水平也是学习中国数学的一个拦路虎。为此,本教材专设“读一读”部分,使预科生能尽快适应中国数学语言的特点。 (二)直观图形与数学知识的结合 大多数留学生在本国都接触过相当于中国的初高中水准的数学课程,但以高考
配套教材的编制有利于学生掌握教材的重点、难点,起到教学大纲的作用,又可使学生对课堂知识进行复习、练习,加深对课堂知识的了解和掌握,同时,配套教材还可以将课堂中因为学时限制而不能详细讲解的内容进行扩展学习。
本书是全国高等职业、高等专科教育《高职高等教学系列教材》(该系列教材2004年被评为“北京高等教育精品教材”)之一《高等数字》的学习辅导书,本书是配合主教材《高等教育》(第二版)的学习辅导书,本书依照教材的九章内容即函数·极限·连续,导数与微分,中值定理·导数应用,不定积分,定积分及其应用,微分方程,向量代数与空间解析几何,多元函数微分学,无穷级数而编写,与第二版教材相辅相成,同步使用。新版辅导教材每章按照教学要求、内容提要与解题指导、教材习题选解、自测题与参考解答四部分内容编写。教学要求指明学生应掌握和理解的知识点;内容提要是把重点内容和容易混淆的概念给出提示,解题指导是通过典型例题的解法教会学生数学思维方法,揭示出解题规律,并通过典型例题中的点评与说明,指出初学者易犯的错误,使
本书是根据普通高等医药院校数学教学要求编写而成的数学基础课程教材,本书共分6章,分别阐述了函数、极限与连续;导数与微分;导数的应用;不定积分;定积分及其应用;常微分方程等医药学研究巾所涉及的数学基础知识.以基本概念、基本理论与数学方法为重点,结合医药实例对各章内容进行详细讲解,并配有适当的习题,本书在每章内容结束之后,均配有相应的数学历史知识与著名数学家生平以提高学生对数学的学习兴趣。
本书是按照*大学数学教学指导委员会的基本要求,充分吸取当前优秀高等数学教材的精华,并结合数年来的教学实践经验,针对当前学生的知识结构和习惯特点而编写的。全书分为上、下两册。本书为上册,是一元函数微积分部分,共四章,主要内容包括函数极限与连续,一元函数微分学及其应用,一元函数积分学及其应用,微分方程。每节前面配有课前导读,核心知识点配备微课,每章后面附有章节测试和拓展阅读。本书注重知识点的引入方法,使之符合认知规律,更易于读者接受。同时,本书精炼了主要内容,适当降低了学习难度,对部分内容调整了顺序,使结构更加简洁,思路更加清晰。本书还注重知识的连贯性,例题的多样性和习题的丰富性、层次性,使读者在学习数学知识点的同时拓宽了视野,欣赏数学之美。本书可作为高等院校理工科类各专业的教材
本书是国家工科数学教学基地之一的哈尔滨工业大学数学系,根据数学教学改革成果而编写的系列教材之一。全书共九章,内容包括:随机事件与概率,条件概率与独立性,随机变量及其分布,多维随机变量及其分布,随机变量的数字特征与极限定理,数理统计的基本概念,参数估计,假设检验,单因素试验的方差分析及一元正态线性回归。每章后的习题及书末的补充题收录了较多的应用题及历年工学、经济学硕士研究生的入学考试题。
本套《高等数学》教材是福建省教育厅高校精品课程立项建设的一个成果,是我校长期开设这门课程的经验总结,凝聚了校内、外许多老师多年辛勤劳动的心血。 吴炯圻、陈跃辉、唐振松编著的《高等数学及其思想方法与实验(上)》以数学思想方法为指导,阐述微积分学的基本内容、基本方法和有关应用,分为上下两册。上册(1~6章)包括函数与极限、导数与微分、微分中值定理与导数的应用、不定积分、定积分及其应用和微分方程;下册(7~11章)包括空间解析几何、多元函数微分学及其应用、重积分、曲线积分与曲面积分和无穷级数。各章均附有数学实验和思想方法选讲各一节,书末还附有几种常用曲线、积分表、Mathematica的使用简介与各章习题的参考答案。 《高等数学及其思想方法与实验(上)》适用于一般理工科、经济、管理各专业学习高等数
本书是与同济大学数学教研室编写的《高等数学(第四版)》(高等教育出版社,1996)相配套的辅导教材,可供使用该教材的师生参考. 本书分为上、下册,内容编排与教材编写顺序一致.上册包括函数与极限、导数与微分、中值定理与导数的应用、不定积分、定积分、定积分的应用,下册包括空间解析几何与向量代数、多元函数微分法及其应用、重积分、曲线积分与曲面积分、无穷级数和常微分方程. 每节的内容包括教学基本要求、答疑解惑、经典例题解析和习题选解.每章后有总习题选解和总复习.上册书末附有常用公式和三套期末考试模拟试卷及其参考答案,下册书末附有三套期末考试模拟试卷及其参考答案和三套数学竞赛试卷.
本书是《21世纪高等院校数学规划系列教材》之《高等数学(上册)》。它是根据高等院校理工类本科高等数学课程教学大纲的要求,结合编者多年在教学线积累的实践经验以及对高等数学课程内容的深入研究和透彻理解编写而成的。本书旨在培养学生的数学素质、创新意识以及运用数学工具解决实际问题的能力。全书分上、下两册,上册包含函数、极限与连续、导数与微分、微分中值定理与导数应用、不定积分、定积分、定积分应用以及微分方程等内容。各节后均配有相应的习题,书末附参考答案或提示,供读者参考。 本书内容取材适当,逻辑清晰,重点突出,难点分散,通俗易懂,便于自学。每一章的后设置了“综合例题”一节,介绍各种重要的题型,博采众长的解题方法。这对开阔解题思路,激发学习兴趣,提高学生综合应用数学知识的能力将是十分有益的
本书根据*《高职高专教育高等数学课程教学基本要求》编写,是浙江省教育厅基金项目《高职高专数学教育管理模式研究》成果之一。 本书包括一元微积分、多元微积分、向量代数与空间解析几何、无穷级数、常微分方程、行列式、矩阵、线性方程组、方阵的特征值、特征向量和二次型及其化简等共十四章。 本书起点较低,进展较为平缓,主线突出,并且编写了较多的数学文化知识和数学史料,以增加学生对数学史、数学思想和方法的了解,提高他们的数学文化素质。 本书可作为两年制或三年制的高职高专、成人院校理工类各专业的高等数学教材,也可作为教师进修或专升本学生自学的参考读物。
由湘潭大学文科高等数学教学改革课题组编著的这本《高等数学》将高等数学的主干内容——一元函数微积分与多元函数微积分有机地结合起来,针对文科类(含经济、管理类)专业对高等数学的不同要求,将课程内容分成若干模块。本书分基础版与加强版两册出版,基础版为必修模块,内容为函数与极限基础、函数微分学基础、一元函数积分学基础、微分方程初步,书末还附有常用的数学公式与希腊字母、常用积分公式、部分习题答案与提示;加强版为选修模块,包括极限、连续与导数续论、中值定理与导数应用、多元函数积分学与无穷级数、微分方程与差分方程。可根据专业的不同要求选修相关模块。每节后配有习题,习题分为A、B两组,A组为基础题,B组为综合题。 《高等数学》(加强版)体系完整、结构严紧、逻辑清晰、叙述清楚、例题与习题较多、通俗易懂
本“导论”是中国科学技术大学非数学专业通用的讲义,是在近50年的使用过程中,经过不断修订、充实而成的。与同类书相比,其广度有所拓宽,论证定理、公式逻辑严谨,编排内容循序渐进,阐述概念联系实际,深入浅出。为加深对概念、定理等的理解和掌握,书中编有丰富的例题,以及复习思考题、习题和总复习题。 本“导论”分上、下两册出版。上册讲述单变量函数微积分与空间解析几何。下册讲述多变量函数微积分、级数与常微分方程。另配学习辅导一册。 本册内容包括多变量函数的微分学、多变量函数的积分学、场论、无穷级数、含参变量的积分、富里叶分析和线性微分方程,共7章。 本“导论”可作为理工科院校非数学专业或师范类院校数学专业的教材或教学参考书,也可供具有一定数学基础的读者自学。
本书的编写汲取国内外众多优秀教材之长,在透彻研究的基础上,以尽可能简单的方式来呈现微积分知识.本书是课本与网络(手机)相结合的立体教材.网络(手机)支持重点知识讲解、图形演示、习题答案或提示、扩展阅读、讨论等移动学习功能.本套教材分为上、下册,并配有《高等数学教程例题与习题集》.本书是上册,内容包括:函数、极限与连续、导数与微分、微分中值定理及其应用、不定积分、定积分及其应用.本书各节末均配有分层习题,各章末还配有综合习题.书后附录的“研究与参考”,对若干重点问题进行了细致的分析.本书为高等院校理工科类各专业学生的教材,也可作为自学或考研的参考书.
《高等数学(第2版)(套装上下册)》是以*高等工科数学课程教学指导委员会制定的《高等数学课程教学基本要求》为标准,以培养学生的专业素质为目的,充分吸收编者们多年来教学实践与教学改革成果编写而成的。 《高等数学(第2版)(套装上下册)/21世纪普通高等教育应用型规划教材》分为上、下册.上册含函数与极限、导数与微分、微分中值定理与导数应用、不定积分、定积分及其应用、微分方程等内容,下册含向量代数与空间解析几何、多元函数微分学、重积分、曲线积分与曲面积分、无穷级数等内容.每节均配有习题,每章配有综合练习题,书末附有习题参考答案,便于教与学。 《高等数学(第2版)(套装上下册)/21世纪普通高等教育应用型规划教材》可供高等本专科院校工科各专业使用,也可供其他专业参考。
《高等数学(上册)(工科类)》是根据高等数学课程教学基本要求编写的工科高等数学教材。全书共分上下两册。上册的主要内容包括:极限与连续、导数与微分、中值定理与导数的应用、不定积分、定积分及其应用、常微分方程和Math-ematica软件的介绍;下册的主要内容包括空间解析几何与向量代数、多元函数微分法及其应用、重积分、曲线积分与曲面积分、无穷级数。为便于读者学习,各章后都编写了演示与实验和总复习题,全书编写了习题解答。 《高等数学(上册)(工科类)》适合作为普通高等院校工科专业本专科学生的学习教材,也可作为远程高等教育、成人教育、高等职业教育的教材,或研究生、教师和科技人员的学习参考书。
本教材依据*颁发的《高等数学课程教学基本要求》,组织长期在高校教学线的教师编写。该教材的目标定位为:适合地方性高校的教学实际,面向物理类、电子信息类和计算机类本科专业。 编写中,我们着眼于物理类、电子信息类和计算机类本科专业对高等数学的需求对内容进行取舍,概念的引入、例题和习题的选用都尽量联系专业知识。我们力求做到:循序渐进,由浅入深;叙述简洁,概念明了;突出重点,分散难点。重要概念和重要理论讲述前,重视知识背景的阐述,旨在使学生增强用数学解决实际问题的意识和准确理解、把握知识。为了使初学的学生易于掌握,我们设置较多的例题;为了帮助学生准确理解概念、掌握方法,我们每章安排有小结。 考虑到学与练紧密结合的重要性,每节安排的习题紧扣重点,并由易到难;考虑到学生考研的需要,每一
本教材是全国高等农林院校“十一五”规划教材。教材按照*非数学类专业数学基础课程教学指导委员会制定的《工科类本科数学基础课程教学基本要求》进行编写,兼顾农林院校的特点,结合多年来的教学体会,对教材进行了一些有益的改革尝试。 全书分上、下两册编写,共九章。上册内容包括:函数的极限与连续,一元函数微分学及其应用,一元函数积分学及其应用,微分方程等四章。下册内容包括:空间解析几何,多元函数微分学,重积分,曲线积分与曲面积分,无穷级数等五章。 本教材可以作为高等农林院校工科类专业高等数学课程教材,也可供其他普通高等学校理工类非数学专业选用。
针对当前高等数学教学的现状分析,《高等数学的教学改革策略研究》一书应需而生。本书主要围绕高等数学的教学思想改革策略研究、高等数学的教学内容改革策略研究、高等数学的教学主体改革策略研究、高等数学的教学目标改革策略研究、高等数学的教学方法改革策略研究、高等数学的教学模式改革策略研究、高等数学的教学评价改革策略研究、高等数学的教学实践改革策略研究等内容进行了阐述,以期通过本书的分析研究,能够对高等数学的教学改革有所助益。