本书对高等数学的大部分内容作了简明的、介绍性的论述,全书共分十二章,其中八章分别讨论数论、代数、几何及线性代数、极限、连续性及拓扑学、微分、积分、级数和概率、每章都从基本概念、基本定理开始,一直论述到当前的进展,并附有该学科的历史概况及有关的著名数学家的生平简介,重要参考书。另外还有三章分别讨论数学模型与现实,数学的应用及17世纪的数学史,最后一章讨论数学的社会学、数学的心理学及数学教学。《BR》 本书内容丰富,论述严谨,可使读者了解数学的全貌、现代数学的特点及数学的应用并可提高读者对数学的兴趣。《BR》 本书由胡作玄同志翻译,张燮同志初校,沈永欢同志复校。
本书是作者在多年教学经验的基础上撰写的一部实变函数教材,第二版在第一版使用9年的基础上作了修订,第三版特别增加了部分习题参考答案与提示。本书内容包括:集合与实数集、Lebesgue测度、可测函数、Lebesgue积分、微分和积分、Lp空间。每章后均附习题与例题,以便于读者学习和掌握实变函数论的基础知识。
Б.П.吉米多维奇是前苏联有影响的教育家和数学家。他主编的《吉米多维奇数学分析习题集》(含4462道习题),内容丰富,覆盖面广泛,针对性强,在我国有较大的影响,书中的许多习题,都广泛地被我国多所高等院校《微积分》教材所采用,有些题目甚至出现在全国考研等试题中。《吉米多维奇 高等数学习题精选精解》。对该书进行了精选,共分八章,每章又分若干节。在章节设置上与财经院校《微积分》教材基本一致,涉及的内容涵盖了《微积分》的全部主题,涵盖了硕士研究生入学考试数学三大纲的全部内容。
本书是高等学校文科(包括经管类)各专业的数学教材,分上、下两册。上册含一元函数的微积分和线性代数部分,内容包括初等函数、极限与连续、变化率与导数、积分、线性代数初步、矩阵与线性方程组、矩阵的特征值与特征向量、二次型。下册含多元函数的微积分、常微分方程和概率统计部分,内容包括多元函数的微分、二重积分、无穷级数、常微分方程、随机事件的概率、随机变量及其概率分布、数理统计初步。各章均配有适当、适量的习题供读者学习巩固。
本书是根据文科学生的需要而编写的比较简明扼要的一本教材。全书分为五个部分:函数极限与微积分 、线性代数、线性规划简介、概率论初步、数理统计及Excel统计应用简介。全书例题丰富,每节后均配有适当数量的习题。
本书是作者根据在北京大学和清华大学多年的教学实践过程中编写的,并增加了部分习题。内容主要内容包括多项式、行列式、线性方程组、矩阵、二次型、线性空间、线性变换和欧几里得空间。本书按教程各章习题顺序编排,使学生提高分析问题和解题的能力,加深对基本内容的理解与掌握,开发学生智能,增强对学好本门课程的信心和兴趣
《高等数学典型例题分析》是以同济版《高等数学》(第七版)为蓝本编写的学习辅导书,全书共分11章,内容包括:一元函数与极限、导数与微分、微分中值定理与导数的应用、不定积分、定积分及其应用、常微分方程及其应用、向量代数空间解析几何、多元函数微分学及其应用、重积分、曲线积分与曲面积分、无穷级数,每章内容包括内容提要、例题、思考题三部分,内容提要给出相关的概念、定理和公式。例题注重对解题思想、解题方法的分析和总结,培养学生的数学思维,思考题帮助读者巩固、拓展所学数学知识。 《高等数学典型例题分析》例题典型,覆盖面广,解题方法清晰完整,解题思路分析透彻,归纳总结全面,《高等数学典型例题分析》可作为高等学校大学数学课程的教学参考书、习题课教材,以及考研复习用书,
《高等代数习题解(上)(修订版)》从多项式、行列式、线性议程组、矩阵等方面,精选了618道典型性较强的习题,做了全面详细的解答,并注意了一题多解。每节习题之前都对本节主要定义、定理和理要结论作了简要的概述。内容丰富,重点突出,解答明确,尤其便于自学。可供高等院校师生、中学教师和广大数学爱好者以及有志报考研究生的人员学习参考。
《预科数学基础教程》具备以下特点: (一)汉字认读与数学语言的结合 对于汉语基础较差,至多在中国仅仅接受过一个学期的汉语强化教学(约650学时)的预科生来说,对以汉语表述的数学上的很多专业词汇和常用语往往不知其音;或知其音,不知其意;或一知半解;所以必须让汉字教学和数学知识教学同时进行。在本书的每一节中,我们设计了“认一认”部分,专门用拼音和英文同时标注数学生词,以减少阅读和学习障碍,这是预科数学教学中不可缺少的一个环节。由于汉语数学表达的特殊性,预科生的阅读水平也是学习中国数学的一个拦路虎。为此,本教材专设“读一读”部分,使预科生能尽快适应中国数学语言的特点。 (二)直观图形与数学知识的结合 大多数留学生在本国都接触过相当于中国的初高中水准的数学课程,但以高考
本书是普通高等教育 十一五 *规划教材、国家精品课程教材和国家电工电子教学基地教材《数字逻辑与数字系统(第5版)》(书号:ISBN 978-7-121-32537-3)的配套教材。全书共分10章,内容包括:数字逻辑基础、逻辑门电路、组合逻辑电路、触发器、时序逻辑电路、半导体存储器、可编程逻辑器件、脉冲波形的产生与整形、数模转换和模数转换、数字系统分析与设计等。每章包含学习要点、教学要求、解题指导和习题解答4部分内容。本书可作为高等学校计算机、通信、电子、电气及自动化等专业的本科生 数字电子技术 课程辅助教材,还可供从事电子工程设计与开发的技术人员参考使用。
配套教材的编制有利于学生掌握教材的重点、难点,起到教学大纲的作用,又可使学生对课堂知识进行复习、练习,加深对课堂知识的了解和掌握,同时,配套教材还可以将课堂中因为学时限制而不能详细讲解的内容进行扩展学习。
本书是全国高等职业、高等专科教育《高职高等教学系列教材》(该系列教材2004年被评为“北京高等教育精品教材”)之一《高等数字》的学习辅导书,本书是配合主教材《高等教育》(第二版)的学习辅导书,本书依照教材的九章内容即函数·极限·连续,导数与微分,中值定理·导数应用,不定积分,定积分及其应用,微分方程,向量代数与空间解析几何,多元函数微分学,无穷级数而编写,与第二版教材相辅相成,同步使用。新版辅导教材每章按照教学要求、内容提要与解题指导、教材习题选解、自测题与参考解答四部分内容编写。教学要求指明学生应掌握和理解的知识点;内容提要是把重点内容和容易混淆的概念给出提示,解题指导是通过典型例题的解法教会学生数学思维方法,揭示出解题规律,并通过典型例题中的点评与说明,指出初学者易犯的错误,使
《高等数学习题集》(第四版)是与同济大学数学系编写的《高等数学及其应用》(第二版)及吴赣昌主编的《微积分》(经管类 第三版)配套的本科院校工科类和经管类各专业学生课后综合性练习或复习用书。本习题集是在前三版习题集基础上结合新采用的教科书精细修改,增减部分内容而编写的。习题集每节后有工科类、经管类共同练习的习题,也有工科类与经管类不同的习题。每章后面还有 自我检测题 和 提高题 。在工科类或经管类题目的题号和相关节号前加 △ 或 ○ 以示区别。工科类和经管类通用的题目不加记号,个别专业使用的特殊习题在节号前加 * 号。本次习题集修订时特别增加2018年全国硕士研究生入学统一考试数学一、二、三试题和答案,供继续深造或将来报考研究生的学生尽早了解考研时高等数学等对考生的要求。
本书为《高等数学(同济 七版)》(上册)的配套辅导书,本书共分为7章,每章包含知识结构图、考研大纲要求、考研试卷分值统计、本章内容概述、题型与方法、考研真题解析、教材课后习题详解、目标自测题与答案共七个部分。本书主要特点:例题种类详细,知识点的结构层次清楚,内容充实,方法性强以及与考研联系紧密。本书是针对使用该教材的教师与学生的同步辅导书,也适合作为考研数学复习的参考书。
本书是根据普通高等医药院校数学教学要求编写而成的数学基础课程教材,本书共分6章,分别阐述了函数、极限与连续;导数与微分;导数的应用;不定积分;定积分及其应用;常微分方程等医药学研究巾所涉及的数学基础知识.以基本概念、基本理论与数学方法为重点,结合医药实例对各章内容进行详细讲解,并配有适当的习题,本书在每章内容结束之后,均配有相应的数学历史知识与著名数学家生平以提高学生对数学的学习兴趣。
本书是按照*大学数学教学指导委员会的基本要求,充分吸取当前优秀高等数学教材的精华,并结合数年来的教学实践经验,针对当前学生的知识结构和习惯特点而编写的。全书分为上、下两册。本书为上册,是一元函数微积分部分,共四章,主要内容包括函数极限与连续,一元函数微分学及其应用,一元函数积分学及其应用,微分方程。每节前面配有课前导读,核心知识点配备微课,每章后面附有章节测试和拓展阅读。本书注重知识点的引入方法,使之符合认知规律,更易于读者接受。同时,本书精炼了主要内容,适当降低了学习难度,对部分内容调整了顺序,使结构更加简洁,思路更加清晰。本书还注重知识的连贯性,例题的多样性和习题的丰富性、层次性,使读者在学习数学知识点的同时拓宽了视野,欣赏数学之美。本书可作为高等院校理工科类各专业的教材
本套《高等数学》教材是福建省教育厅高校精品课程立项建设的一个成果,是我校长期开设这门课程的经验总结,凝聚了校内、外许多老师多年辛勤劳动的心血。 吴炯圻、陈跃辉、唐振松编著的《高等数学及其思想方法与实验(上)》以数学思想方法为指导,阐述微积分学的基本内容、基本方法和有关应用,分为上下两册。上册(1~6章)包括函数与极限、导数与微分、微分中值定理与导数的应用、不定积分、定积分及其应用和微分方程;下册(7~11章)包括空间解析几何、多元函数微分学及其应用、重积分、曲线积分与曲面积分和无穷级数。各章均附有数学实验和思想方法选讲各一节,书末还附有几种常用曲线、积分表、Mathematica的使用简介与各章习题的参考答案。 《高等数学及其思想方法与实验(上)》适用于一般理工科、经济、管理各专业学
本书是国家工科数学教学基地之一的哈尔滨工业大学数学系,根据数学教学改革成果而编写的系列教材之一。全书共九章,内容包括:随机事件与概率,条件概率与独立性,随机变量及其分布,多维随机变量及其分布,随机变量的数字特征与极限定理,数理统计的基本概念,参数估计,假设检验,单因素试验的方差分析及一元正态线性回归。每章后的习题及书末的补充题收录了较多的应用题及历年工学、经济学硕士研究生的入学考试题。
《高等数学习题全解与学习指导》分上、下两册。下册内容为向量与空间解析几何,多元函数微分学,多元函数积分学,无穷级数配套习题讲解。书中各章节的主要内容都配有精心选取的例题和习题,着重训练读者对定义与概念的理解、对定理与方法的应变能力,培养读者解决问题的逻辑思维方法和创新能力。
《[高等数学(上册)]学习辅导与习题解答(理工类·第四版)》内容简介:人大版“21世纪数学教育信息化精品教材”(吴赣昌主编)是融纸质教材、教学软件与网络服务于一体的创新性“立体化教材”。教材自出版以来,历经多次的升级改版,已形成了独特的立体化与信息化的建设体系,更加适应我国大众化教育新时代的教育改革,受到全国广大师生的好评,迄今已被全国600余所大专院校广泛采用。
本套《高等数学》教材是福建省教育厅高校精品课程立项建设的一个成果,是我校长期开设这门课程的经验总结,凝聚了校内、外许多老师多年辛勤劳动的心血。 吴炯圻、陈跃辉、唐振松编著的《高等数学及其思想方法与实验(上)》以数学思想方法为指导,阐述微积分学的基本内容、基本方法和有关应用,分为上下两册。上册(1~6章)包括函数与极限、导数与微分、微分中值定理与导数的应用、不定积分、定积分及其应用和微分方程;下册(7~11章)包括空间解析几何、多元函数微分学及其应用、重积分、曲线积分与曲面积分和无穷级数。各章均附有数学实验和思想方法选讲各一节,书末还附有几种常用曲线、积分表、Mathematica的使用简介与各章习题的参考答案。 《高等数学及其思想方法与实验(上)》适用于一般理工科、经济、管理各专业学习高等数