素数论这一古老的数学分支,包含着许多诸如哥德巴赫问题那样的有趣而又艰深的难题。为了解决这些问题,素数论既借助也带动了其他数学分支的发展,因而素数论迄今仍是一个活跃的领域。 本书旨在介绍素数论的主要内容,书中谈到了许多的数论问题和猜想,简介了解决这些问题的方法和近代成果。介绍了我国数学家在这个领域里的重要贡献。本书的前一半只用到了中学的数学知识,而具备一些数学分析的知识后就可以读完后一半。全书写法简捷,深入浅出,可供中学生和广大数学爱好者阅读。
本书沿着一条简捷的途径,着重地介绍了代数K-理论在拓扑学、几何学、数论和算子代数中有重要应用的K0群、K1群及K2群的基本理论,K0群的三种等价定义,K1群和K2群的同调刻画,以及它们之间的正合列等,可将读者带到这一学科的前沿。同时还介绍了类数计算及K2群计算方面的一些基本结果及近十年来外学者得到一些新成果。全书自成体系,学过线性代数和近世代数的读者都可阅读。本书可作为数学系高年级学生及研究生的,也可供高校数学教师及数学研究人员阅读和参考。
《解析数论导论(英文版)》是一部为本科生提供学习数论的基本思想和技巧的教程,重点强调解析数论。前五章讲述可约性、收敛和算术函数等基本概念。紧下来的章节讲述序列中素数的狄利克莱定理、高斯和、二次剩余、狄利克莱级数和欧拉积及其在黎曼zeta函数和狄利克莱函数中的应用,并且引进了划分的概念。书中每章末都收集了大量练习。前十章,除去章,任何具备基本微积分知识的人都可以读懂;最后四章需要对复函数理论(包括复积分和留数积分)的了解。
《有限群论基础(第2版)》讲述有限群论的基本知识,以较少的篇幅完整地阐述了有限群论的基本概念及处理有限群的方法,并介绍了有限群表示的基本概念及常用的结论,具体内容包括:基本概念、正规子群、同态定理、置换群、置换表示、交换群,Sylow定理、可解群及有限群表示论初步。 《有限群论基础(第2版)》内容深入浅出,富有启发性,并配备较多的例子和习题,便于讲授和自学。 学习本书,不要求读者学习过抽象代数课程或阅读过相关的书籍,本书可用做高等院校有限群论课程的教材,也可供科技工作者作为自学资料或参考书。
本书系统介绍有关数学难题——哥德巴赫猜想的研究成果,特别是我国数学家的重大贡献,同时介绍研究这一问题的一些重要方法。
《有限群论基础(第2版)》讲述有限群论的基本知识,以较少的篇幅完整地阐述了有限群论的基本概念及处理有限群的方法,并介绍了有限群表示的基本概念及常用的结论,具体内容包括:基本概念、正规子群、同态定理、置换群、置换表示、交换群,Sylow定理、可解群及有限群表示论初步。 《有限群论基础(第2版)》内容深入浅出,富有启发性,并配备较多的例子和习题,便于讲授和自学。 学习本书,不要求读者学习过抽象代数课程或阅读过相关的书籍,本书可用做高等院校有限群论课程的教材,也可供科技工作者作为自学资料或参考书。