本书包含七章。章从Lebesgue测度和Lebesgue积分出发介绍抽象测度和抽象积分,以及可测函数的连续性;第二章介绍LP空问及其可分性和对偶空间,以及用连续函数逼近LP空间元素;第三章介绍Hilbert空间上线性变换的表示,Hilbert空间中的规范正交系;作为例子,本章还介绍了三角级数,它是逼近论、小波分析的基础,另外,作为Riesz表示定理的应用之一,这里还介绍了广义测度的有关知识(这部分可作为选讲内容);第四章主要讨论n维欧氏空间上的Fourier变换的概念及基本性质,以及Fourier变换在偏微分方程中的应用;第五章微分学是将数学分析中函数的微分概念推广到映射和测度中去,分别介绍了映射的导数、偏导数及高阶导数和测度的导数;第六章介绍Banach空间中的五大定理;最后一章介绍了广义函数。
本书主要以李庆扬、王能超、易大义三位教授编写的《数值分析》(清华·第四版)的章节为顺序,以其内容为基础而编写的。共分九章,每章设计了五个板块: 一、重点内容提要,列出基本概念、重要内容简介,重要定理和公式,突出考点的核心知识。 二、知识结构图,用框图形式列出各知识点间的有机联系。 三、常考题型及典型精解,从多年教学经验出发,列出了常见考研题型和课程结业考试试题,并编入一些典型题,给出了详细解答。其中不少题目是对相应内容的进一步补充。 四、学习效果测试题,这一部分是为检查读者的学习效果和应试能力而设计的。通过测试,读者可以进一步加深对所学内容的理解,增强解题应试能力。 五、课后习题全解 对《数值分析》(清华·第四版)的课后习题作了详细解答。 本书从指导课程教学、学习和考