Thecontrollabilityandobservabilityareofgreatimportanceinboththeoryandapplications.Apletetheoryhaeenestablishedforlinearhyperbolicsystems,inparticular,forlinearwaveequations.Therehavealsobeensomeresultsforsemilinearwaveequations.Forquasilinearhyperbolicsystemsthathavenumerousapplicationsinmechanics,physicsandotherappliedsciences,however,veryfewresultsareavailableevenwithspacedimensionone.Thismonographiasedmainlyontheresultsobtainedbytheauthorandhiscollaboratorsinrecentyears.Bymea~softhetheoryonthesemi-globalclassicalsolution,asimpleanddirectconstructivemethodispresentedinasystematicwaytogetboththecontrollabilityandobservabilityintheframeworkofclassicalsolutionsforgeneralfirstorder1-Dquasilinearhyperbolicsystemswithgeneralnonlinearboundaryconditions.Correspondingapplicationsaregivenfor1-Dquasilinearwaveequationsandforunsteadyflowsinatree-likeworkofopencanals,respectively.Morethanonehundredrelatedreferencesareprovided.Thiookwith11chaptersisself-contained.Anappendixisespeciallywrittenforthosereaderswhoarenotfamil
《复分析》(原书第3版)的诞生已是半个世纪之前的事情,但是,深贯其中的严谨的学术风范以及针对不同时代所做出的切实改进使得它愈久弥新,成为复分析领域历经考验的一本经典教材。《复分析》(原书第3版)作者在数学分析领域声名卓著,多次荣获国际大奖,这也是《复分析》(原书第3版)始终保持旺盛生命力的原因之一。《复分析》(原书第3版)从现代数学的观点介绍复分析的基本知识与常用工具,全书共分为8章,主要包括:复数、复函数、作为映射的解析函数、复积分、级数与乘积展开、共形映射,软件克雷问题、椭圆函数以及全局解析函数,此外,大部分章节后都有练习,便于学生掌握书中内容。
《测度论(第1卷)(影印版)》是作者在莫斯科国立大学数学力学系的讲稿基础上编写而成的。卷包括了通常测度论教材中的内容:测度的构造与延拓,Lebesgue积分的定义及基本性质,Jordan分解,Radon-Nikodym定理,Fourier变换,卷积,L空间,测度空间,Newton-Leibniz公式,极大函数,Henstock-Kurzweil积分等每章最后都附有非常丰富的补充与习题,其中包含许多有用的知识,例如:Whitney分解,Lebesgue-Stieltjes积分,Hausdorff度,Brunn-Minkowski不等式,Hellinger积分与Hellinger距离,BMO类,Calderon-Zygmund分解等。书的最后有详尽的参考文献及历史注记。这是一本很好的研究生教材和教学参考书。
《统一无穷理论》根据理想计数器模型,综合运用三维视野(自然数数值维、编码长度维和∞的可达性维),指出传统自然数集概念和层次无穷理论的局限性,提出完整的自然数集概念和统一无穷理论:①肯定自然数的二重性(内蕴性和排序性)和无穷的双相性(潜无穷和实无穷并存)。②指出潜无穷过程只能生成由有穷自然数组成的开放序列,它不是无穷集合;实无穷过程可生成由所有自然数组成的无穷集合,包括有穷自然数、趋近无穷自然数和无穷大。③断定完整的自然数集和单位区间实数集等势,2 ∞ =∞是∞的基本性质,∞和无穷小δ=1/∞存在。④提出数的理想模型和规范模概念,证明数和无理数都是无穷集,得到了数的判定定理。 《统一无穷理论》是用计算机科学原理和方法论证数学基础问题的初次尝试,重点在于阐述统一无穷理念,适于研究无穷问
《不适定问题的正则化方法及应用(典藏版)》以自封闭的形式系统介绍了线性不适定问题的正则化求解方法,以及在数学物理反问题研究中的一些应用,主要内容包括:不适定问题的基本概念和特点,研究不适定问题需要的基本数学工具和方法,求解不适定问题的标准的正则化方法及近年来的新发展,以及正则化方法在逆时热传导、数值微分、逆散射等领域中的应用。《不适定问题的正则化方法及应用(典藏版)》的内容包含了作者和其他学者近几年来的有关工作。
本书是关于小波分析的一本比较全面的著作。书中分为三个部分:小波基础、小波进展和小波应用。部分包括章—第5章,内容包括:小波分析初步,空间的基底与框架,Gabor变换、连续小波变换及小波奇异性分析,小波级数、多分辨分析、小波的分解算法与重构算法及小波包分解,尺度函数与小波的构造。第二部分包括第6章~1章,内容包括:小波框架,多小波和多带小波、平衡多小波以及平衡化处理,提升格式和双正交小波,多元小波与脊波,抽样理论,向量值小波。第三部分包括2章—6章,内容包括:信号的时频分析与音乐和音频信号分析,图像压缩,小波去噪,边缘检测,小波在医疗中的应用。本书内容丰富、重点突出,既有小波的基础理论,又有算法的详细推导,并且对小波最近进展的重要方面进行了总结,对许多应用也进行了比较详细的叙述。它可以作为
本书研究如何将线性科学中适用的强有力的基本方法发展推广到非线性科学。书中全面系统论述作者及其课题组近几年建立的新研究方法,如多线性分离变量法、泛函分离变量法和导数相关泛函分离变量法、形变映射法、方程推导的非平均法等。本书还系统介绍了在非线性数学物理严格解研究方面的一些其他重要方法及其发展,如有限和无限区域的反散射方法、形式分离变量法、奇性分析法、对称性约化方法、达布变换方法和广田直接法等等。书中利用这些方法,对非线性系统中的各种局域激发模式及其相互作用作了详尽的描述。 本书可作为高等院校物理系和数学系等理工科高年级本科生选修课教材和研究生专业基础课教材,也可供物理、数学、力学、计算机、大气和海洋科学等非线性科学领域的研究人员参考。
《二阶椭圆型偏微分方程(第二版修订版)》主要阐述二阶拟线性椭圆型偏微分方程的一般理论以及为此而必需的线性理论,着重于有界区域上的DirichIet问题。书中的内容源于作者在斯坦福大学为研究生课程所写的讲义,但大大超出了这些课程的范围,并包括了位势理论、泛函分析等预备性章节;第二版修订版增加了Nikolai Krylov的导数Holder估计的相关内容,这—估计提供了椭圆型(和抛物型)高维完全非线性方程的古典理论进一步发展的基本要素。《二阶椭圆型偏微分方程(第二版修订版)》是一本自封闭的严谨的教学参考书,适合相关专业的研究生和高年级本科生阅读,也可供其他科技工作人员参考。