本书介绍了现代数值近似技术的理论及实用知识,解释了它们的工作原理。同它的前几个版本一样,该书仍将重点放在近似技术的数值分析上,以便为读者今后的学习打下坚实的数值分析与科学计算基础。本书内容丰富、翔实,可以根据不同的学习对象和学习目的,选择、组织、串联相应的章节,形成侧重于理论或是侧重于实用的两种学习策略。书中的每个概念均以大量的例子说明,同时书中还包含2000多个习题,范围从方法、算法的基本应用到理论的归纳与扩展,涉及物理、计算机、生物、社会科学等多个不同的领域。通过这些实例,进一步说明在现实世界中,数值方法是如何被应用的。第七版新增了两个突出的部分,一是前承条件共轭梯度方法,为线性方程系统提供了更完备的解决方法;另一部分是同伦与连续方法,为非线性方程系统的近似求解提供了不同的方
hepresentbookiasedonlecturesgivenbytheauthorattheUniversityofTokyoduringthepasttenyears.ItisintendedasatextbooktobestudiedbystudentsontheirownortobeusedinacourseonFunctionalAnalysis,i.e.,thegeneraltheoryoflinearoperatorsinfunctionspacestogetherwithsalientfeaturesofitsapplicationtodiversefieldsofmodemandclassicalanalysis.Necessaryprerequisitesforthereadingofthiookaresummarized,withorwithoutproof,inChapter0undertitles:SetTheory,TopologicalSpaces,MeasureSpacesandLinearSpaces.Then,startingwiththechapteronSemi-norms,ageneraltheoryofBanachandHilbertspacesispresentedinconnectionwiththetheoryofgeneralizedfunctionsofS.L.SOBOLEVandL.SCHWARTZ.Whilethebookisprimarilyaddressedtograduatestudents,itishopeditmightproveusefultoresearchmathematicians,bothpureandapplied.Thereadermaypass,e.g.,fromChapterIX(AnalyticalTheory.ofSemi-groups)directlytoChapterXIII(ErgodicTheoryandDiffusionTheory)andtoChapterXIV(IntegrationoftheEquationofEvolution).Suchmaterialsas"WeakTopologiesandDualityinLocallyConvexSpaces"and"NuclearSpaces"areprese
数学分析是大学数学系的一门重要的必修课,是学习其它数学课的基础。同时,也是工科高等数学的主要组成部分。吉米多维奇著的《数学分析习题集》是一本国际知名的著作,它在中国有很大影响,早在上世纪五十年代,就出版了该书的中译本。现安徽人民出版社翻译出版了新版的吉米多维奇《数学分析习题集》。新版的习题集在原版的基础上增加了部分新题,该习题集有五千道习题,数量多,内容丰富,包括了数学分析的主题。部分习题难度较大,初学者不易解答,应安徽人民出版社的同志邀请我们为新版的习题集作解答。本书可以作为学习数学分析过程中的参考用书。
本书研究如何将线性科学中适用的强有力的基本方法发展推广到非线性科学。书中全面系统论述作者及其课题组近几年建立的新研究方法,如多线性分离变量法、泛函分离变量法和导数相关泛函分离变量法、形变映射法、方程推导的非平均法等。本书还系统介绍了在非线性数学物理严格解研究方面的一些其他重要方法及其发展,如有限和无限区域的反散射方法、形式分离变量法、奇性分析法、对称性约化方法、达布变换方法和广田直接法等等。书中利用这些方法,对非线性系统中的各种局域激发模式及其相互作用作了详尽的描述。 本书可作为高等院校物理系和数学系等理工科高年级本科生选修课和研究生专业基础课,也可供物理、数学、力学、计算机、大气和海洋科学等非线性科学领域的研究人员参考。
本书通过大量丰富的实例,帮助读者实现从基本的常微分方程向更多高级概念(偏微分方程、傅里叶级数和边界值问题等)的顺利过渡。作者轻松的语言风格使得书中的材料通俗易懂,尤其适合那些渴望了解更多和更深微积分知识的读者。本书在第1版的基础上增加了偏微分方程在工程和物理学方面的应用,并且提供了更多数学证明和偏微分方程的原理。此外,本书的每一小节后都配备了大量的习题,并在页边提供了注释、国标或重要的公式等,突出了书中的重点与难点,方便读者自学。本书提供读者利用计算机辅助学习,旨在使读者更直观、更清晰地理解和掌握书中所讲述的题材。读者可以利用从作者网站上下载的Mathematica文件进行上机实践。
本书旨在以动力系统理论为基础,阐述时间序列分析的现代方法。这部修订版,增加了一些新的章节,对原版进行了大量的修订和扩充。从潜在的理论出发,到实际应用话题,并用众多领域收集来的大量经验数据解释这些实用话题。本书对研究时间变量信号的各个领域包括地球、生命科学科学家和工程人员都十分有用。目次:基本话题:导论;线性工具和一般考虑;相空间方法;确定论和可预测性;不稳定性:Lyapunov指数;自相似性:当决定论是弱的时候非线性方法的应用;非线性线性精选;高等话题:高等浸入式方法;混沌数据和噪音;更多有关不变量;模型和预测;非平稳信号;耦合和非线性系统综合;混沌控制。A:TISEAN程序应用;B:实验数据集合描述。读者对象:数学、生命科学、经济等众多实践应用领域的科研人员。
在数学领域,希尔伯特空间是欧几里德空间的一个推广,其不再局限于有限维的情形。与欧几里德空间相仿,希尔伯特空间也是一个内积空间,其上有距离和角的概念。此外,希尔伯特空间还是一个完备的空间,其上所有的柯西列等价于收敛列,从而微积分中的大部分概念都可以无障碍地推广到希尔伯特空间中。希尔伯特空间为基于任意正交系上的多项式表示的傅立叶级数和傅立叶变换提供了一种有效的表述方式,而这也是泛函分析的核心概念之一。希尔伯特空间是公式化数学和量子力学的关键性概念之一。这本《希尔伯特空间导论》(作者勇)是英文导论本。
《数学分析的思想与方法》通过多角度、深层次、全方位地探讨了数学分析学科的思想方法,全书共分为六部分:部分对数学分析内容体系中所体现的重要思想进行了探讨与分析;第二部分对数学分析内容体系中所体现的重要思想进行了探讨与分析;第三部分对数学分析内容体系中所蕴含的哲学思想进行了挖掘与分析;第三部分通过大量的事例对数学分析内容中所常用的数学思想进行了举例与分析;第四部分对数学美与数学分析中的美学思想进行了论述与分析;第五部分对微积分创立过程中数学家的思想和方法进行了整理与分析;最后一部分以附录的形式将古代数学家解决问题的方法进行了举例与说明。
《物理学中的群论》第三版分两篇出版, 《物理学中的群论: 有限群篇》是有限群篇, 但也包含李代数的基本知识. 《物理学中的群论: 有限群篇》从物理问题中提炼出群的概念和群的线性表示理论、通过有限群群代数的不可约基介绍杨算符和置换群的表示理论、引入标量场, 矢量场, 张量场和旋量场的概念及其函数变换算符、以转动群为基础解释李群和李代数的基本知识和半单李代数的分类、由晶体的平移不变性出发讲解晶体对称性和晶体的分类. 《物理学中的群论: 有限群篇》附有习题, 与《物理学中的群论: 有限群篇》配套的《群论习题精解》涵盖了习题解答.