《俄罗斯数学精品译丛:数学分析》供初学数学分析用,它包括中学所讲授的数学分析各章节的全部内容,书中讲述多项式的导数、三角函数的导数、指数函数和对数函数的导数,积分定义为微分的逆运算、图形的面积及有穷和的极限,书后附有各章的练习,《俄罗斯数学精品译丛:数学分析》并不着意于讲述的严格性,而是注意给学生以计算技巧的训练。 《俄罗斯数学精品译丛:数学分析》的对象是中学教师和高年级学生、师范院校数学专业的学生,以及初学数学分析的读者。
本书是与刘玉琏等编写的《数学分析讲义》(下册,第四版,高等教育出版社2003年出版)配套的学习辅导书。此次修汀埘原书版的编写框架没有改变,每个大节还是按照讲义体例,逐节对应编写。每节包括基本内容、学习要求、答疑辅导、补充例题和练习题解法提要五部分,每章末附有自我检测题,书末给出其解答。《数学分析讲义学习辅导书(第2版)(下册)》可作数学专业学生、中学教师、自学读者、函授学员学习数学分析的辅导书,也可作为数学分析习题课教学参考书和考研的参考书。
这套教材以全面贯彻党的教育方针,全面提高教育质量为宗旨,以教育要“面向现代化、面向世界、面向未来”为指针,以《方案》为依据,体现素质教育思想和改革创新精神,体现大学文化程度和为小学教育服务的内在要求,遵循小学教师成长的规律和学科教学特点,加强通识教育,注重文理渗透,强化职业能力培养,合理安排教材结构,科学构建教材体系。在教材编写过程中,充分汲取了省内外试验院校的教学经验,并注意借鉴国际师范教育教学改革的先进成果,在确保科学性的前提下,进一步突出教材内容的时代性、针对性和系统性,坚持师范性和学术性统一,基础性和发展性并重,使教材体系更加符合培养面向21世纪本、专科学历小学教师的需要。 本套教材由国内学养深厚的知名专家学者担任主编,一大批具有丰富教学经验的和较高学术水平的学科带
本套教材与传统教材相比,既有继承,也有创新。强调严格逻辑推理的同时,注重数学直观的阐述,在培养学生解决问题能力的同时,注重培养学生提出问题的能力,难度上降一些,适应面要广一些,有利于提高学生的综合数学素质。例如把“实数理论和极限理论”拆开,分两步走,册讲先讲个极限初步,早点进入微积分的内容。第二册再讲实数理论和再论极限,做严格训练。多元微积分中不讲容度,只讲二元,三元多元变量替换的理论,多元让学生举一反三自己去思索。增加微分形式,微元法观点,斯托克斯公式,场论,调和函数等在其它学科有用的内容。 本书引进了MATHEMATICA,MAPLE,MATLAB等数学软件,运用了多媒体教学手段,使抽象概念可视化,变化发展过程用动画描绘,典型例子和习题可调参数,让学生反复练习。生动,活泼,直观,在交互环境中进行教
《吉米多维奇数学分析习题集》在八九十年代畅销一时,现在已经成为数学专业学生的参考书。我们在原第三版基础上进行改版,保留原汁原味的吉米多维奇数学分析习题集的内容,同时按照*标准修改部分内容,增加部分提示、点拨内容,以适应当前形势。
数学分析是大学数学系的必修课,也是理工科高等数学的主要组成部分,更是研究生考试的必考内容。关于数学分析,富盛名习题,莫过于前苏联数学家,鲍里斯帕夫罗维奇 吉米多维奇编写的《数学分析习题集》。但是在相当长的一段时间之内,这套书只有题目,并无标准解法,直到20世纪八十年代初由我国著名数学家费定晖,周学圣等人将其全部解出,并且反复演算,终集结成册,由山东科学技术出版社出版,这就是在数学界大名鼎鼎的《1.Б.П.吉米多维奇数学分析习题集》。从《吉米多维奇数学分析习题集》到《吉米多维奇数学分析习题集题解》虽然两字之差,但是包含了一代数学大师们无数的心血。 直至1977年吉米多维奇去世,全套题集共计4462道,由浅入深的涵盖了数学分析题目的全部变化形式,部分习题难度很大,因此无论是自学、提高还是考研,这本书
本书是为工科及其他非数学专业的研究生编写的教材,共分七章,开头是预备知识,简单介绍集合、映射及不等式。章Lebesgue积分初步,第二章赋范线性空间,第三章Hilbert空间,第四章线性泛函和对偶空间,第五章线性了和谱,第六章广义函数与Sobolev空间,第七章Banach空间中的微分学。本书前五章配有一定数量的习题,书后附有答案与提示,便于读者自学。 本书取材适当,注重应用;写得深入浅出,通俗易懂,除作为工科研究生教材外,也可供工程技术人员和其他科技人员阅读参考。对理工科高年级大学生也是一本合适的参考书。
本书的前身是北京大学数学系教学改革实验讲义。改革的基调是:强调启发性,强调数学内在的统一性,重视学生能力的培养。书中不仅讲解数学分析的基本原理,而且还介绍一些重要的应用(包括从开普勒行星运动定律推导万有引力定律等)。从概念的引入到定理的证明,书中作了煞费苦心的安排处理,使传统的材料以新的面貌出现。书中还收人了一些有重要理论意义与实际意义的新材料(例如利用微分形式的积分证明布劳沃尔不动点定理等)。 全书共三册。册的内容是:一元微积分,初等微分方程及其应用;第二册的内容是:一元微积分的进一步讨论,多元微积分;第三册的内容是:曲线、曲面与微积分,级数与含参变元的积分等。 本书可作为大专院校数学系基础课教材或补充读物,又可作为大、中学教师,科学工作者和工程技术人员案头常备的数
数学分析是大学数学系的一门重要的必修课,是学习其它数学课的基础。同时,也是工科高等数学的主要组成部分。 吉米多维奇著的《数学分析习题集》是一本国际知名的著作,它在中国有很大影响,早在上世纪五十年代,国内就出版了该书的中译本。现安徽人民出版社翻译出版了新版的吉米多维奇《数学分析习题集》。新版的习题集在原版的基础上增加了部分新题,该习题集有五千道习题,数量多,内容丰富,包括了数学分析的全部主题。部分习题难度较大,初学者不易解答,应安徽人民出版社的同志邀请我们为新版的习题集作解答。本书可以作为学习数学分析过程中的参考用书。 众所周知,学习数学,作练习题是一个很重要的环节。通过作练习题,可以巩固我们所学到的知识,加我们对基础概念的理解,还可以提高我们的运算能力,逻辑推理能力,综合
左军、谢冬秀编著的《数值计算方法与实验学习 辅导(十二五普通高等教育规划教材)》是国防工业出 版社出版的教材《数值计算方法与实验》的配套学习 辅导书,全书内容共分八章,包括引论、非线性方程 求根、解线性方程组的数值解法、插值法、函数逼近 与曲线拟合、数值积分与数值微分、代数特征值问题 计算方法、常微分方程的数值解法。每章分三部分: **部分是基本要求与知识要点,简明扼要地提出本 章的要求,系统归纳了要掌握的知识点及有关重点难 点内容;第二部分是典型例题选讲,为巩固和深化课 程内容,选择一些典型例题作了详细分析与解答;第 三部分是课后习题解答,对教材课后习题给出详尽解 答过程。 本书可作为理工科院校各专业本科生及研究生学 习数值分析或计算方法课程时的辅导书,也可供从事 科学与工程计算的科技人
《数学分析解题精讲》是编者(徐新亚)30余年数学分析教学和考研辅导的经验总结,全书共选入600 多个例题和200多个课后习题,它们基本上都是近年来国内各高校数学专业招收硕士研究生时的入学试题,涵盖了数学分析考研大纲要求的所有内容,精简实用、针对性强,完全能够满足绝大多数数学专业学生的考研需要。 如何解题是《数学分析解题精讲》的主旨,但又决不是为解题而解题.对书中所列的全部例题,注重分析题意,寻找突破点,对许多典型题型进行解题思路分析,力图发现常见的规律,以求积累解题技巧,实现解题能力的升华。 《数学分析解题精讲》既可以作为数学专业学生进行考研辅导时的教科书,也适合学生自学。
《数学分析(3)》是为满足通识教育的要求而编写的数学分析教材,共分3册.本册为第3册,包括实数理论和实数连续性,内容为;戴德金分割、实数连续性定理、覆盖和一致连续、上下极限等;曲线积分与曲面积分,包括两类曲线积分及两类曲面积分、格林公式、高斯公式等;再论积分,进一步讨论了黎曼可积的条件,并给出了重积分变量代换的证明;二元函数中值定理和泰勒公式,包括隐函数的存在性、二元函数中值定理、二元函数的泰勒公式(极值定理证明);反常积分与含参变量积分、无穷级数的进一步知识与无穷乘积等. 《数学分析(3)》的读者对象:全日制本(专)科数学系各专业学生,对高等数学要求较高的其他理工各专业,学过数学分析的数学系高年级学生等.
全书分三册出版。*册讲述函数、极限理论、一元函数微积分,第二册讲述实数理论、级数和反常积分,第三册讲述n维欧几里得空间中微积分和微分形式。一元部分较系统讲述了凸函数和上、下极限。分两步严格处理了实数与极限理论:一元微积分前严格讲述极限定义、性质、运算;一元微积分后,从空间的连通性、紧性、完备性观点讲实数定义和实数理论以及连续函数的基本定理。 本书阐述细致,引进概念注意讲清实际背景,定理证明、公式推演作了必要的分析,并提出一些值得思考的问题;通过大量不同类型例题介绍解题基本方法和特殊技巧。 全书配有习题集,与教材同时出版。 本书由理科数学教材编审委员会函数论编审组委托欧阳光中副教授,董延闿教授复审,可作为综合大学、师范院校数学系教材或教学参考书。
《数值分析》数值分析课程作为计算数学的主要组成部分,就其课程特点而言,又名“数值计算方法”或“数值方法”。它是一门介绍科学计算的基础理论与基本方法的综合性课程,也是应用数学和计算机科学相结合的产物。数值分析课程的核心内容是研究在计算机上应用数值计算方法求解各类数学问题,并利用数学基础理论对各类数值算法的收敛性和数值稳定性进行分析。随着计算机及科学技术的快速发展,数值分析课程的理论与方法已影响到许多学科,新的计算性交叉学科分支不断涌现,如计算力学、计算物理、计算化学、计算生物学,等等,并在生产、管理以及科学研究中得到了广泛应用。此外,数值实验作为数值分析课程在教学过程中的一个重要环节,是理论与实践相结合的主要途径。
河北科技大学理学院数学系编的《矢量分析与场 论》根据*高等院校矢量分析与场论课程的基本 要求,依据工科数学《矢量分析与场论教学大纲》, 并结合本学科的发展趋势,在积累多年教学实践的基 础上编写而成。内容选取以工科数学“必须、够用” 为度,严密性次之,旨在培养工科学生的数学素养, 提高应用数学工具解决实际问题的能力。 全书共分3章,包括:矢量分析,场论,拉普拉 斯算子和哈密顿算子。 本书适用于高等院校工科各专业,尤其是通信、 电子信息、应用物理、自动控制、测控、机械、材料 成型等专业,也可供工程技术人员阅读参考。
《数学分析选讲》分为上、下两册。本书为下册,是为报考硕士研究生的学生并兼顾正在学习“数学分析”课程的学生编写的复习指导书。目的是帮助他们从概念和方法两方面深化、开拓所学数学分析的内容。本书按数学分析课的内容分为四章:极限理论、连续函数、一元函数微分学和一元函数积分学。每章由基本概念分析和解题方法分析两部分组成。前一部分,针对学生学习时易出现的错误,设计编写了各种形式的问题,以引导读者对基本概念、基本理论进行多侧面、多层次、由此及彼、由表及里的思索和辨析;后一部分则着重分析解题思路,探索解题规律,归纳、总结解题方法。《数学分析选讲》对读者掌握分析问题和处理问题的方法与技巧有较好的指导作用。所选例题、习题内容广泛,且具有与硕士研究生入学考试相当的水平。本书对从事数学分析和高
《数学分析选论(数学专业50学时课程)/国家理科基地教材(新版链接为:http://product.dangdang.com/product.aspx?product_id=22646232)》是为具有大专数学专业基础的学生继续攻读本科数学专业而写的。主要内容包括:实数理论、函数的连续性、微分学、积分学和级数理论等。《数学分析选论(数学专业50学时课程)/国家理科基地教材(新版链接为:http://product.dangdang.com/product.aspx?product_id=22646232)》在编写格局上注意贯彻两个方面的要求:一方面,要有良好的复习功能;另一方面,又要有相当的新意。反映在例题和习题的配置上,仍以经典的数学分析问题为主;而在叙述基本概念时,注意数学形式的统一,使学生易于把握这些概念的本质。所以《数学分析选论(数学专业50学时课程)/国家理科基地教材(新版链接为:http://product.dangdang.com/product.aspx?product_id=22646232)》也可作为本科一
数学分析是大学数学系的必修课,也是理工科高等数学的主要组成部分,更是研究生考试的必考内容。关于数学分析,富盛名习题,莫过于前苏联数学家,鲍里斯帕夫罗维奇 吉米多维奇编写的《数学分析习题集》。但是在相当长的一段时间之内,这套书只有题目,并无标准解法,直到20世纪八十年代初由我国著名数学家费定晖,周学圣等人将其全部解出,并且反复演算,终集结成册,由山东科学技术出版社出版,这就是在数学界大名鼎鼎的《1.Б.П.吉米多维奇数学分析习题集》。从《吉米多维奇数学分析习题集》到《吉米多维奇数学分析习题集题解》虽然两??世,全套题集共计4462道,由浅入深的涵盖了数学分析题目的全部变化形式,部分习题难度很大,因此无论是自学、提高还是考研,这本书都是适合的。 特别是费定晖、周学圣版本题解,历经三十年风雨,三次改
本书是与李大华、林益教授等主编的普通高等教育“十一五”*规划教材《工科数学分析》(上、下册)(第三版)相配套的教学辅导书,主要是为使用该教材的学生提供课后复习指导,同时兼顾教师的教学需要。本书也可作为使用其他教材学习高等数学的学生和相关教师的参考书。 本书通过对基本概念、基本理论及重要定理和思想方法的深入分析,逐步引导学生对所学内容进行再思考,在探究的过程中加深对重点和难点的认识,从而提高学生运用数学知识分析和解决问题的能力。本书按照对应教材中的章节顺序编写,每节均包含内容提要、释疑解惑、范例分析、习题选解四个部分的内容,每章的后给出原教材中总习题的全解。