《俄罗斯数学精品译丛:数学分析》供初学数学分析用,它包括中学所讲授的数学分析各章节的全部内容,书中讲述多项式的导数、三角函数的导数、指数函数和对数函数的导数,积分定义为微分的逆运算、图形的面积及有穷和的极限,书后附有各章的练习,《俄罗斯数学精品译丛:数学分析》并不着意于讲述的严格性,而是注意给学生以计算技巧的训练。 《俄罗斯数学精品译丛:数学分析》的对象是中学教师和高年级学生、师范院校数学专业的学生,以及初学数学分析的读者。
数学分析是数学专业的一门重要的基础课。习题是数学教学中的一个重要组成部分,在数学分析中尤其是如此。因为通过数学分析中习题训练而获得的数学思想、方法、技巧和素质,可以使后继和邻近课程的学习变得容易,从而达到融会贯通的目的。 然而,令人遗憾的是忽视习题教学的观点和做法在当前现实中并不鲜见。例如对习题的要求不甚明确,挤占必要的习题课教学时间,对学生在习题中存在的重要、典型、普遍性的问题着力解决不够……不同程度地存在着学生“讲课内容听懂了,就是不会做习题”的现象。要很好解决这个问题需要做多方面的工作,而设法直接帮助学生学会解答教科书中的习题,也许是切实可行的有效途径之一。但单靠任课教师来解决这一问题,至少在目前情况下是困难的。 编写本书的目的在于针对学生数学分析的困难,为他们提供
数学分析是数学专业的一门重要的基础课。
本书是与刘玉琏等编写的《数学分析讲义》(下册,第四版,高等教育出版社2003年出版)配套的学习辅导书。此次修汀埘原书版的编写框架没有改变,每个大节还是按照讲义体例,逐节对应编写。每节包括基本内容、学习要求、答疑辅导、补充例题和练习题解法提要五部分,每章末附有自我检测题,书末给出其解答。《数学分析讲义学习辅导书(第2版)(下册)》可作数学专业学生、中学教师、自学读者、函授学员学习数学分析的辅导书,也可作为数学分析习题课教学参考书和考研的参考书。
上海交通大学数学系是全国工科数学教学基地, 数学教学成绩一直以优秀闻名全国。上海交通大学数 学系编写的《数学分析试题分析与解答(新核心理工 基础教材普通高等教育十二五重点规划教材配套辅导 )》选编了该校近年的24份本科生数学分析试卷,对 每一道试题均作详解,并有题前分析和题后点评,指 明解题思路和方法以及学生在解题过程中常犯的错误 ,有的题还给出多种解法。 本书可作为高等院校《数学分析》课程师生的教 学辅导用书,也可供考研者参考。
本书是同济大学计算数学教研室几位老师集体智慧的结晶,供了人民邮电出版社出版的《现代数值计算》一书中习题的全部解答,并给出了详细的求解过程,对于实验题还给出了完整的Matlab程序,后提供了3套模拟考卷,并给出了答案。 本书适合作为本科生和工科研究生数值计算配套用书,也适合相关教学人员参考。
这套教材以全面贯彻党的教育方针,全面提高教育质量为宗旨,以教育要“面向现代化、面向世界、面向未来”为指针,以《方案》为依据,体现素质教育思想和改革创新精神,体现大学文化程度和为小学教育服务的内在要求,遵循小学教师成长的规律和学科教学特点,加强通识教育,注重文理渗透,强化职业能力培养,合理安排教材结构,科学构建教材体系。在教材编写过程中,充分汲取了省内外试验院校的教学经验,并注意借鉴国际师范教育教学改革的先进成果,在确保科学性的前提下,进一步突出教材内容的时代性、针对性和系统性,坚持师范性和学术性统一,基础性和发展性并重,使教材体系更加符合培养面向21世纪本、专科学历小学教师的需要。 本套教材由国内学养深厚的知名专家学者担任主编,一大批具有丰富教学经验的和较高学术水平的学科带
这套教材以全面贯彻党的教育方针,全面提高教育质量为宗旨,以教育要“面向现代化、面向世界、面向未来”为指针,以《方案》为依据,体现素质教育思想和改革创新精神,体现大学文化程度和为小学教育服务的内在要求,遵循小学教师成长的规律和学科教学特点,加强通识教育,注重文理渗透,强化职业能力培养,合理安排教材结构,科学构建教材体系。在教材编写过程中,充分汲取了省内外试验院校的教学经验,并注意借鉴国际师范教育教学改革的先进成果,在确保科学性的前提下,进一步突出教材内容的时代性、针对性和系统性,坚持师范性和学术性统一,基础性和发展性并重,使教材体系更加符合培养面向21世纪本专科学历小学教师的需要。 本套教材适用于培养大学本、专科学历小学教师的全日制学校,也可以作为在职小学教师本专科学历进修、继
本套教材与传统教材相比,既有继承,也有创新。强调严格逻辑推理的同时,注重数学直观的阐述,在培养学生解决问题能力的同时,注重培养学生提出问题的能力,难度上降一些,适应面要广一些,有利于提高学生的综合数学素质。例如把“实数理论和极限理论”拆开,分两步走,册讲先讲个极限初步,早点进入微积分的内容。第二册再讲实数理论和再论极限,做严格训练。多元微积分中不讲容度,只讲二元,三元多元变量替换的理论,多元让学生举一反三自己去思索。增加微分形式,微元法观点,斯托克斯公式,场论,调和函数等在其它学科有用的内容。 本书引进了MATHEMATICA,MAPLE,MATLAB等数学软件,运用了多媒体教学手段,使抽象概念可视化,变化发展过程用动画描绘,典型例子和习题可调参数,让学生反复练习。生动,活泼,直观,在交互环境中进行教
《研究生系列教材:数值分析》系统地介绍了数值分析的理论和算法。全书共7章,内容包括三部分:部分是泛函分析基础,主要介绍距离空间、Banach空间、Hilbert空间的基本概念和理论;第二部分是数值逼近,包括函数的插值、逼近问题,数据处理问题,数值积分和数值微分;第三部分是数值代数,包括线性方程组、非线性方程(组)的数值解法,矩阵的特征问题。 《研究生系列教材:数值分析》内容丰富,论述翔实严谨,可作为数学系高年级本科生及电子、通信、计算机等理、工科专业研究生的教材,也可供从事科学和工程计算的科技工作者参考。
本书较全面地讲述了计算机常用的数值分析方法及有关的基础理论知识。《数值分析》共分为6章,包括了引论、方程求根的数值解法、插值方法、数值微分与数值积分、线性代数方程组的数值解法以及常微分方程初值问题的数值解法等数值分析的基础知识和基本理论。每章都有计算实习内容,用于指导学生自学以及上机实验。《数值分析》讲述力求由浅入深,通俗易懂,理论上具有完整性和系统性,强调基本原理和基本方法,配以大量的实例、图表,易于教学,便于自学。在附录部分列出了部分算法的c语言程序。《数值分析》可作为高等学校计算机专业学生的教材,也可供工程技术人员。
本书是为适应高等学校数学学科教学改革的需要,结合编者多年来教学实践的经验和体会编写而成。主要围绕极限、级数、不等式和中值定理等专题,通过大量例题,介绍数学分析中的常用方法和基本技巧。内容包括作为数学分析理论基础的实数理论、求解数列极限的若干典型求法、函数的极限与连续性、微分和积分中值定理、数项级数、函数项级数、不等式、变分法、函数的逼近与开拓以及代数中的分析方法等。每节后配备适量习题,其中难度较大的题目用*号加注。 本书可作为数学分析课程的辅助教材。对正在学习数学分析的读者,学过数学分析或高等数学准备学习后继课程的读者,以及准备报考研究生的读者都会有所帮助。另外,还可供青年教师使用和参考。
本书是与刘玉琏等编写的《数学分析讲义》(上册,第四版,高等教育出版社2003年出版)配套的学习辅导书。此次修订对原书版的编写框架没有改变,每个大节还是按照讲义体例,逐节对应编写。每节包括基本内容、学习要求、答疑辅导、补充例题和练习题解法提要五部分,每章末附有自我检测题,书末给出其解答。 本书可作数学专业学生、中学教师、自学读者、函授学员学习数学分析的辅导书,也可作为数学分析习题课教学参考书和考研的参考书。
本书是为了配合华东师范大学数学系出版的《数学分析(第三版·下册)而编写的配套辅导书。 全书按教材内容,对各章的重点、难点做了较深刻的分析。针对各章节全部习题给出详细解题过程,并附以“知识点窍”和“逻辑推理”,思路清晰、逻辑性强,循序渐进地帮助读者分析并解决问题,各章还附有典型例题与解题技巧,以及历年考研真题评析。 本书可作为工科各专业、本科学生、“数学分析”课程教学辅导材料和复习参考用书,也可作为工科考研强化复习的指导书及“数学分析”课程教师的教学参考书。
《吉米多维奇数学分析习题集》在八九十年代畅销一时,现在已经成为数学专业学生的参考书。我们在原第三版基础上进行改版,保留原汁原味的吉米多维奇数学分析习题集的内容,同时按照*标准修改部分内容,增加部分提示、点拨内容,以适应当前形势。
《数学分析习题集》是一部著名的、很有代表性的习题集。编者根据我国目前的教学实际情况,选编了其中约三分之一的重要习题,并作了详细解答,分上、下两册出版。本书覆盖了该习题集各章节的主要内容,便于读者由厚到薄、由少而精地掌握该习题集内容,这对学习理科数学分析或工科高等数学(即微积分)的读者将大有裨益。 本书有很强的可读性,并兼顾多方需要,适合理、工科等的本、专科各专业教、学数学分析或高等数学(微积分)的师生作为教学参考书。
本书是综合性大学和高等师范院校数学系本科生数学分析课程的教材。全书共分三册。册共六章,内容为函数、序列的极限、函数的极限与连续性、导数与微分、导数的应用、不定积分;第二册共六章,内容为定积分、广义积分、数项级数、函数序列与函数项级数、幂级数、傅里叶级数:第三册共五章,内容为n维欧氏空间与多元函数的极限和连续、多元函数微分学、重积分与广义重积分、曲线积分与曲面积分及场论、含参变量的积分。本书每章配有适量习题,书末附有习题答案或提示,供读者参考。 作者多年来在北京大学为本科生讲授数学分析课程,按照教学大纲,精心选取教学内容并对课程体系优化整合,经过几届学生的教学实践,收到了良好的教学效果。本书注重基础知识的讲述和基本能力的训练,按照认知规律,以几何直观、物理背景作为引入数学概念的
本书是综合性大学和高等师范院校数学系本科生数学分析课程的教材。全书共分三册。册共六章,内容为函数、序列的极限、函数的极限与连续性、导数与微分、导数的应用、不定积分;第二册共六章,内容为定积分、广义积分、数项级数、函数序列与函数项级数、幂级数、傅里叶级数;第三册共五章,内容为n维欧氏空间与多元函数的极限和连续、多元函数微分学、重积分与广义重积分、曲线积分与曲面积分及场论、含参变量的积分。本书每章配有适量习题,书末附有习题答案或提示,供读者参考。 作者多年来在北京大学为本科生讲授数学分析课程,按照教学大纲,精心选取教学内容并对课程体系优化整合,经过几届学生的教学实践,收到了良好的教学效果。本书注重基础知识的讲述和基本能力的训练,按照认知规律,以几何直观、物理背景作为引入数学概念的