《法兰西数学精品译丛:谱理论讲义(第2版)》是由J.迪斯米埃在20世纪70年代开设线性算子谱理论课程时手写油印的讲义翻译而来的在相当长的一段时期里,该讲义在法国被这一领域的所有学生认真反复阅读,也被教授这一课程的教师大量使用、在本书中,迪斯米埃以完整地陈述谱定理为核心目的,通过基本也是常用的一些例子让读者明白所引进的每一个概念、每一条定理,都是在后续内容中必不可少的,并娴熟地应用各种技巧对定理给出精确、简短而优雅的证明——这就是布尔巴基成员的作品。而本书中体系的严谨与清晰明了则是作者一贯的写作风格 《法兰西数学精品译丛:谱理论讲义(第2版)》可以作为研究生泛函分析基础课的教材,也可以作为大学本科高年级选修课教材,、对于非泛函方向的学生来说,《法兰西数学精品译丛:谱理论讲义(第2
张恭庆、郭懋正编著的《泛函分析讲义(下)》是一部泛函分析教材,它系统地介绍线性算子理论的基础知识,算子半群以及连续函数空间上的Wiener测度和Hilbert空间上的Gauss测度。全书共分四章: Banach代数;无界算子;算子半群以及无穷维空间上的测度论。本书注意介绍泛函分析理论与数学其他分支的密切联系,给出丰富的例子和应用,以培养读者运用泛函分析方法解决问题的能力。 本书适用于理工科大学数学系、应用数学系高年级本科生、研究生阅读,并且可供一般的数学工作者、物理工作者和科学技术人员参考。
《俄罗斯数学精品译丛:数学分析》供初学数学分析用,它包括中学所讲授的数学分析各章节的全部内容,书中讲述多项式的导数、三角函数的导数、指数函数和对数函数的导数,积分定义为微分的逆运算、图形的面积及有穷和的极限,书后附有各章的练习,《俄罗斯数学精品译丛:数学分析》并不着意于讲述的严格性,而是注意给学生以计算技巧的训练。 《俄罗斯数学精品译丛:数学分析》的对象是中学教师和高年级学生、师范院校数学专业的学生,以及初学数学分析的读者。
本书系统地汇集了数学分析各个部分的一些典型例题,并对这些例题的解(证)题方法、思路进行了深入的分析和总结,使读者能从例题分析中提高自己对课程内容的理解、分析和解决问题的能力.每章都附有一定数量的习题,供读者学习时进行练习.
本教材在保留了部分传统的数学分析内容外,新增加了测度论、勒贝格积分、微分流形和流形上的积分等国外教材上常见的内容,这在国内教材上是不多见。本书的出版对高校数学分析课程改革和与国外数学分析教材接轨将起到示范和推动作用。上册内容为:集合与映射,实数与复数,极限,连续函数类,一元函数微分学,一元函数的黎曼积分。
本书是吉米多维奇主编的又一本极具影响的习题集,它适合工科院校高等数学课程,自1959年首次出版以来,已经修订再版多次,本书译自*2006年俄文版。 全书包含三千多道习题和三百多道例题,几乎涵盖了工科院校高等数学课程(除解析几何处)的所有内容,并对课程中要求牢固掌握的重要章节(求极限、微分法、函数作图、积分法、定积分的应用、级数和微分方程的解法)给了特别关注。除此之外,书中还包括场论,傅里叶方法和近似计算的习题。
本书是作者多年来在南开大学数学系讲授泛函分析课程的基础上写成的。全书共分6章:第一章,距离空间与拓扑空间;第二章,赋范线性空间;第三章,有界线性算子;第四章,Hilbert空间;第五章,拓扑线性空间;第六章,Banach代数。本书可作为泛函分析的一本入门教材。每章末附有一定量的习题。
《惠更斯与巴罗,牛顿与胡克:数学分析与突变理论的起步,从渐伸线到准晶体》是由作者于1986年在莫斯科数学协会为大学生开设的数学系列讲座的开幕式上所做的报告扩充而成。作者在书中用现代的数学观点阐述了在惠更斯、巴罗、牛顿、莱布尼茨以及胡克等人的著作中所呈现出来的微积分与理论物理的形成历史,讲述了17世纪80年代的著作与20世纪80年代的著作中数学思想的对比和关系——包括波前的奇点,考克斯特反射群(包括二十面体群)与现代变分学、准晶体对称性之间的关系等。 《惠更斯与巴罗,牛顿与胡克:数学分析与突变理论的起步,从渐伸线到准晶体》中还用现代的复变茹科夫斯基函数讨论了行星轨道椭圆性的牛顿定律,并由此得到了一个新的对偶定律,建立了在不同中心力场中的运动之间的关系,让我们知道了万有引力定律和胡克定
本书分上、下两册,是在第四版的基础上修订而成的。在内容和体例上未作较大变动。知识内容稍有扩充,涉及的方面很广。增加了少量的说明性文字,使内容更加完善。下册内容包括:级数、多元函数微分学、隐函数、反常积分与含参变量的积分、重积分、曲线积分与曲面积分等。 本书阐述细致,范例较多,便于自学,可作为高等师范院校本科教材,也可作为高等理科院校函授教材及高等教育自学用书。
本书是“高等教育百门精品课程教材建设计划”(此计划作为整体已列入新闻出版总署“十五”国家重点图书规划)研究成果之一,是与西安交通大学马知恩和王绵森教授主编的普通高等教育“十五”*规划教材《工科数学分析基础》(第二版)(下册)相配套的教学辅导书。 本书每章内容分为三个部分:主要内容剖析;教学要求、典型例题与讨论题;习题选解。本书可作为工科学生学习高等数学课程的学习辅导书,并兼顾任课教师的教学需要,同时也可供其他非数学类专业的学生和教师参考。
本书是为理工科大学各专业普遍开设的“数值分析”或“计算方法”课程编写的教材,本书列选安徽省高等学校“十一五”省级规划教材。 本书主要内容包括:线性方程组的数值解法(直接法和迭代法),非线性方程(组)的数值解法、数值逼近(包括插值与样条、平方逼近与一致逼近),数值微积分、常微分方程初值问题和边值问题的数值解法以及矩阵特征值、特征向量的数值解法,每章都有大量例题和习题、相关算法的MATLAB程序,并附例题演示;书末附有习题答案、配有上机实习题,供学生上机实习选用,此外,书中给出了所有概念的英文表达以及书中出现的科学家的简介,书末还有相关概念的中英文索引,方便读者查阅,全书阐述严谨、脉络分明、深入浅出、注重理论学习和上机实践相结合,便于教学和自学。 本书也可以作为理工科大学各专业研究生学位
本书介绍了贝叶斯统计的基本思想、基本方法和基本技巧。内容共七章:第一章至第三章围绕先验分布介绍贝叶斯推断方法;第四章至第六章围绕损失函数介绍贝叶斯决策方法;第七章贝叶斯计算。
本书是哈尔滨工业大学所编“普通高等教育‘十一五’*规划教材”——《大学数学》丛书中的一本,全套丛书包括《工科数学分析(第三版)(上、下)》、《线性代数与空间解析几何(第三版)》、《概率论与数理统计》、《数值分析》共5本教材。 《工科数学分析(第三版)》是在第二版的基础上修改而成的,分上、下两册。上册共八章:函数,极限与连续,导数与微分,微分中值定理,不定积分,定积分,导数与定积分的应用,微分方程。下册共六章:多元函数微分学,多元函数积分学,第二型曲线积?与第二型曲面积分、向量场,无穷级数,复变函数初步,微分几何基础知识。每章后有供自学的综合性例题,并以附录形式开了一些新知识窗口。 本书可作为工科大学本科一年级新生数学课教材,也可作为准备考工科硕士研究生的人员和工程技术
本书介绍了科学计算中常用数值分析的基础理论及计算机实现方法。主要内容包括:误差分析、插值、函数逼近、数值积分和数值微分、非线性方程的数值解法、线性方程组的直接解法、线性方程组的迭代解法、常微分方程的数值解法及相应的上机实验内容等。各章都配有大量的习题及上机实验题目,并附有部分习题的参考答案及数学专业软件 Mathematica和Matlab的简介。本书采用中、英两种语言编写,适合作为数学、计算机和其他理工类各专业本科“数值分析(计算方法)”双语课程的教材或参考用书,也可供从事科学计算的相关技术人员参考。
本书介绍了非线性系统理论。非线性系统理论与线性系统理论相平行、相对应,但更具一般性。非线性系统理论建立在状态空间分析方法的基础上,所使用的主要数学工具是微分几何。微分几何方法已被证明是分析和设计非线性系统的卓有成效的和强有力的工具。本书内容由浅入深,概念清晰,理论严谨,深度适当,体系相对完整,侧重于系统地介绍基础理论,同时也兼顾实际应用。书中后一部分,从工程实用角度,深入地、仔细地分析了一些有通用性的实例,包括电机系统、单机和多机电力系统、机械手系统、飞行器系统(潜器和水下机器人系统)等。 本书是供研究生用的非线性几何理论的入门书,主要面向初涉足非线性理论领域的读者,为进一步提高和深入研究提供理论基础。 本书可作为工科院校相关学科博士研究生和硕士研究生的教材,也可供相关学科
《数学分析(上册)/普通高等教育“十二五”规划教材》的编写注重理论、方法和实例的有机结合,力求做到以例示理,以题示法,注重选题的广度与梯度,达到从一题到一类,从一类到一系列的效果.《数学分析(上册)/普通高等教育“十二五”规划教材》内容选取适当,结构严谨,逻辑清晰,叙述详细,通俗易懂,便于自学。《数学分析(上册)/普通高等教育“十二五”规划教材》内容包括映射与函数、数列极限、函数极限、函数的连续性、导数和微分、微分中值定理及其应用、实数及其完备性、不定积分、定积分、定积分的应用和广义积分等。书后附有习题答案。
随着当代科学技术的日益数学化,许多工科专业对数学知识的需求与日俱增,在基础课设置上,越来越不满足于传统的高等数学教材,希望用数学分析取代高等数学。另一方面,数学分析作为数学专业重要的基础课,学习一遍,学生往往难以学深吃透、融会贯通。基于上述原因,本书参阅了国内外大量教材和研究性论著,编写了这本《数学分析十讲》。取材大体基于而又略深于一般的高等数学和数学分析教材,是其某些内容的自然引申、扩展、推广、深化,与通常的高等数学和数学分析教材自然衔接。内容新而不偏、深而不难、广而不浅、精而不繁,方法简便,易学易用。《BR》 本书在选材和写法上,注重启发性、综合性、代表性、普适性和应用性,理论、方法和范例三者有机结合,并与数学思想融为一体。书中以理引法、以例释理、以例示法、借题习法、法
《数学分析新讲(第二册)》的前身是北京大学数学系教学改革实验讲义。改革的基调是,强调启发性,强调数学内在的统一性,重视学生能力的培养。书中不仅讲解数学分析的基本原理,而且还介绍一些重要的应用(包括从开普勒行星运动定律推导万有引力定律)。从概念的引入到定理的证明,书中作了然费苦心的安排,使传统的材料以新的面貌出现。书中还收入了一些有重要理论意义与实际意义的新材料(例如利用微分形式的积分证明布劳沃尔不动点定理等)。